Elsevier and UCL Collaborate to Predict Functionality of Novel Proteins to Aid the Discovery of New Drug Targets

UCL computer science protein modelling team to use Pathway Studio® data to develop new prediction algorithms

London, October 19, 2015

Elsevier, a world-leading provider of scientific, technical and medical information products and services, today announced that it is collaborating with University College London (UCL) to analyze the applicability, scope and scientific viability, and value of protein function predictions. UCL will use Pathway Studio, part of Elsevier’s R&D Solutions for Pharma & Life Sciences, to analyze and visualize biological relationships.

“Our goal in recent years has been to develop better and better computational methods to predict protein function directly from protein or gene sequences, which could, if successful, ultimately help provide greater insight into the mechanisms of disease,” said Professor David Jones, UCL Department of Computer Science, Bioinformatics Group. “Pathway Studio’s capabilities in the analysis and interpretation of experimental data will enable us to improve our existing algorithms and uncover valuable new insights hidden in the literature.”

The project is part of the Elsevier-sponsored UCL Big Data Institute, an initiative that explores innovative ways to better serve the needs of researchers through the exploration of new technologies and analytics, as applied to scholarly content and data. The researchers will compare predictions of protein functions to information extracted from literature in the context of drug discovery; functional prediction for unknown proteins is also aligned with the development of Next-Generation Sequencing.

“This collaboration with UCL is a great example of how Elsevier works closely with its academic partners to support advanced research that adds real value to both parties,” said Jaqui Hodgkinson, Vice President, Product Development, Elsevier R&D Solutions. “Many researchers find it challenging to prioritize potentially promising drug targets – and prediction models help to focus their research and save them valuable time. Functional predictions for targets, such as interaction partners, biological functions and drugability, are crucial for drug discovery and disease modelling. This approach is particularly relevant when it comes to complex multi-factoral and rare diseases.”

Pathway Studio helps biomedical researchers to understand complex biological processes, like those responsible for disease progression and responsiveness to treatment. It provides a comprehensive resource of easily searchable molecular cell interactions and tools for the analysis and visualization of disease mechanisms, gene expression, and proteomics and metabolomics data; saving researchers time and improving their chances of finding novel results. Pathway Studio enables biological researchers to import and analyze their experimental data in the context of the scientific literature, giving greater insight into the mechanisms of disease and accelerating biological research.

---

About Elsevier
Elsevier is a global information analytics company that helps institutions and professionals progress science, advance healthcare and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirect, Scopus, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, more than 35,000 e-book titles and many iconic reference works, including Gray's Anatomy. Elsevier is part of RELX Group, a world-leading provider of information and analytics to professionals and business customers, in a wide range of industries. www.elsevier.com

Media contact
Harald Boersma
Director Corporate Relations
Elsevier
+31 20 485 2736
h.boersma@elsevier.com