Potential New Approach To Treat Cognitive Impairments In Schizophrenia

 New study to be published in Biological Psychiatry

Philadelphia, PA, September 24, 2007 – A new study reports important evidence for a potential new treatment approach for those diagnosed with schizophrenia. Schizophrenia is considered one of the most devastating of the major psychiatric disorders, which has three distinct facets, often referred to as "positive" (hallucinations, delusions), "negative" (blunted emotions, reduced capacity for pleasure), and "cognitive" (impairments in attention, memory, and problem-solving) symptoms. The cognitive impairments associated with schizophrenia are the aspect of this disorder most strongly associated with the inability to function in the workplace.

The medications currently approved to treat schizophrenia block a subclass of dopamine receptors (dopamine D2 receptors). They have limited efficacy in treating the negative and cognitive symptoms of this disorder and they are frequently associated with significant side effects. "Hence, there is an acute need to develop alternative treatments for schizophrenia that have fewer side effects and are more effective in treating cognitive and negative symptoms of the disorder," according to the authors of this study, scheduled for publication in Biological Psychiatry on October 1st.

"Multidisciplinary work has led to the emergence of the glutamate system as a promising therapeutic target for [the] treatment of schizophrenia," says Bita Moghaddam, Ph.D., the corresponding author on the study. Abnormal function of brain circuits that utilize glutamate as a chemical messenger, particularly in brain regions including the prefrontal cortex and hippocampus, has been implicated in the cognitive deficits associated with schizophrenia. The glutamate-related circuit dysfunction associated with schizophrenia may be modeled, to a meaningful extent, by blocking the NMDA subtype of glutamate receptor. The authors now report that by administering 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide or CDPPB, a drug that stimulates another type of glutamate receptor, the metabotropic glutamate 5 receptor (mGluR5), they can normalize abnormalities in prefrontal cortical function produced by blocking the NMDA glutamate receptor. In other words, CDPPB appears to "treat" an abnormality in brain function that may resemble aspects of schizophrenia.

Dr. Moghaddam comments, "This work is significant because it shows that in an awake behaving mammal (as opposed to in tissue cultures or similar preparation), activation of these receptors has a normalizing effect on the spontaneous activity of prefrontal cortex neurons." John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, adds, "These exciting new data provide important new evidence supporting the testing of mGluR5 stimulating medications for the treatment of schizophrenia, particularly cognitive deficits associated with impairments in the function of the prefrontal cortex. It would be very interesting to know whether this class of medication reduces the transient impairments in cognitive function associated with the administration of NMDA receptor blockers to humans." Although the authors acknowledge that much more research is needed to evaluate the clinical impact of this treatment approach, this study indicates a "promising therapeutic potential" that could ultimately result in making improved treatments available to patients struggling with this illness.

# # #

Notes to Editors:
The article is "Positive Allosteric Modulation of Metabotropic Glutamate 5 (mGlu5) Receptors Reverses N-Methyl-D-Aspartate Antagonist-Induced Alteration of Neuronal Firing in Prefrontal Cortex" by Lucas Lecourtier, Houman Homayoun, Gilles Tamagnan and Bita Moghaddam. Drs. Lecourtier, Homayoun, and Moghaddam are affiliated with the Department of Neuroscience at University of Pittsburgh in Pittsburgh, Pennsylvania. Dr. Tamagnan is with the Institute for Neurodegenerative Disorders in New Haven, Connecticut. The article appears in Biological Psychiatry, Volume 62, Issue 7 (October 1, 2007), published by Elsevier.

Full text of the article mentioned above is available upon request. Contact Jayne M. Dawkins at (215) 239-3674 or ja.dawkins@elsevier.com to obtain a copy or to schedule an interview.

About Biological Psychiatry
This international rapid-publication journal is the official journal of the Society of Biological Psychiatry. It covers a broad range of topics in psychiatric neuroscience and therapeutics. Both basic and clinical contributions are encouraged from all disciplines and research areas relevant to the pathophysiology and treatment of major neuropsychiatric disorders. Full-length and Brief Reports of novel results, Commentaries, Case Studies of unusual significance, and Correspondence and Comments judged to be of high impact to the field are published, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Concise Reviews and Editorials that focus on topics of current research and interest are also published rapidly.

Biological Psychiatry is ranked 4th out of the 95 Psychiatry titles and 16th out of 199 Neurosciences titles on the 2006 ISI Journal Citations Reports® published by Thomson Scientific.

About Elsevier
Elsevier is a global information analytics company that helps institutions and professionals progress science, advance healthcare and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirect, Scopus, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, more than 35,000 e-book titles and many iconic reference works, including Gray's Anatomy. Elsevier is part of RELX Group, a world-leading provider of information and analytics to professionals and business customers, in a wide range of industries. www.elsevier.com

Media Contact:
Jayne Dawkins
+1 215 239 3674