Genetic Modification Shows Promise for Preventing Hereditary Hearing Loss

Reducing enzyme activity in mice with mitochondrial dysfunction prevents or delays deafness, according to new research published in the American Journal of Pathology

Philadelphia, PA, November 6, 2015

A mitochondrial defect is responsible for a type of human hereditary deafness that worsens over time and can lead to profound hearing loss. Using a genetically-modified mice model with a mitochondrial dysfunction that results in a similar premature hearing loss, researchers showed that precise genetic reduction of an enzyme, AMP kinase (AMPK), can rescue the hearing loss. Their results are reported in The American Journal of Pathology.

“Mitochondrial dysfunction causes human diseases, with an estimated occurrence of 1 in 5,000 to 10,000 live births. Mitochondrial diseases are complicated and heterogeneous, characterized by cell- and tissue-specific responses and pathology. An extreme example of tissue specificity is the A1555G mitochondrial DNA (mtDNA) mutation that causes maternally-inherited deafness,” explained lead investigator Gerald S. Shadel, PhD, of the Departments of Pathology and Genetics at Yale School of Medicine.

To study this particular type of deafness, Dr. Shadel and colleagues bred transgenic mice that globally over-express the gene encoding transcription factor B1, mitochondrial (TFB1M). The Tfb1m protein (aka mtTFB1) modifies the 12S ribosomal RNA of mitochondrial ribosomes that are necessary to express mtDNA-encoded genes. These Tg-mtTFB1 mice develop hearing loss at a rate much faster than wild-type controls.

A collaborative group of investigators in the laboratories of Dr. Shadel and Joseph Santos-Sacchi, PhD, Departments of Surgery, Cellular and Molecular Physiology, and Neurobiology, Yale School of Medicine, compared anatomical and functional differences in the hearing pathways of the Tg-mtTFB1 mice. In the cochlea multiple defects were observed, including in the spiral ganglion nerves and the stria vascularis. “We propose that the defects we observed in the stria, spiral ganglion neurons, and outer hair cells conspire to produce the observed hearing loss profile in Tg-mtTFB1 mice,” noted Sharen McKay, PhD, Department of Pathology, Yale School of Medicine and Department of Psychology, University of Bridgeport, the first author of the study.

Specifically, the pathway to hearing loss in the Tg-mtTFB1 mice is initiated by mitochondrial reactive oxygen species that stimulate the enzyme AMPK, which then activates deleterious signaling events in specific parts of the inner ear. Thus, the investigators reasoned that reducing AMPK activity could prevent the hearing loss. To test this hypothesis, they bred Tg-mtTFB1 mice that had one of their AMPK genes knocked out. Between 9 and 12 months of age, the Tg-mtTFB1 group showed the expected increase in auditory brainstem response (ABR) threshold indicative of hearing loss (a higher threshold denotes reduced sensitivity to sound), while the Tg-mtTFB1 mice in which the AMPK gene was also knocked-out had ABR thresholds indistinguishable from those of controls.

“We conclude that reducing AMPK signaling has no effect on normal hearing at the ages tested but rescues or delays premature hearing loss in Tg-mtTFB1 mitochondrial deafness model mice. This opens the possibility for intervention in humans based on inhibiting AMPK, which is already a drug target for several diseases,” stated Dr. Shadel. The team cautions, however, that additional work is needed before the results from this mouse model are used to inform pathology in maternally inherited deafness caused by mtDNA mutations in humans and to understand how these mice might shed light on prophylactic or therapeutic strategies.

Other investigators on the study were Dr. Wayne Yan, Dr. Jessica Nouws, Maximilian Thormann, Dr. Nuno Raimundo, Abdul Khan, and Dr. Lei Song.

---

Notes for editors
“Auditory pathology in a transgenic mtTFB1 mouse model of mitochondrial deafness,” by Sharen E. McKay, Wayne Yan, Jessica Nouws, Max Thormann, Nuno Raimundo, Abdul Khan, Joseph Santos-Sacchi, Lei Song and Gerald S. Shadel. (DOI: http://dx.doi.org/10.1016/j.ajpath.2015.08.014). This article appears online ahead of The American Journal of Pathology, Volume 185, Issue 12 (December 2015) published by Elsevier.  

Full text of this study is available to credentialed journalists upon request; contact Eileen Leahy at +1 732 238 3628 or ajpmedia@elsevier.com. Journalists wishing to interview lead investigator Gerald S. Shadel may contact him directly at 203-785-2475 or gerald.shadel@yale.edu.

This research was supported by NIH grant AG047632 and a pilot grant from The Yale Claude D. Pepper Older American Independence Center (G.S.S), an Ohse Research Grant (L.S.), NIH NIDCD grants DC000273 and DC008130 (J.S.S.), and EMBO postdoctoral fellowship EMBO ALTF 1328-2012 (J.N.).

About The American Journal of Pathology  The American Journal of Pathology, official journal of the American Society for Investigative Pathology, seeks to publish high-quality, original papers on the cellular and molecular biology of disease. The editors accept manuscripts that advance basic and translational knowledge of the pathogenesis, classification, diagnosis, and mechanisms of disease, without preference for a specific analytic method. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, animal, biological, chemical, and immunological approaches in conjunction with morphology.

The leading global forum for reporting quality original research on cellular and molecular mechanisms of disease, The American Journal of Pathology is the most highly cited journal in Pathology – close to 40,000 cites in 2014 – with an Impact Factor of 4.591 and Eigenfactor of 0.06689 according to the 2014 Journal Citation Reports®, Thomson Reuters, 2015, and an h-index of 217 according to the 2014 SCImago Journal and Country Rank.

About Elsevier
Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions — among them ScienceDirect, Scopus, Research Intelligence and ClinicalKey— and publishes over 2,500 journals, including The Lancet and Cell, and more than 35,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group, a world-leading provider of information and analytics for professional and business customers across industries. www.elsevier.com

Media contacts
Eileen Leahy
Elsevier
+1 732 238 3628
ajpmedia@elsevier.com

Dr. Chhavi Chauhan
Scientific Editor
The American Journal of Pathology
+1 301 634 7953
cchauhan@asip.org