New Method Can Identify Chemical Warfare Agents More Easily

The method could help governments protect people from horrifying toxic effects

Amsterdam, July 13, 2016

A new method for extracting, enriching and identifying chemical warfare agents from oils and other organic liquids could help government officials and homeland security protect civilians more effectively from their deadly effects. The method, published in Journal of Chromatography A, uses nanoparticles to capture the chemicals.

Chemical warfare agents are powerful noxious chemicals that have been used as weapons of mass destruction. Theycan be nerve, blister, choking, blood or psychochemical agents, acting on the nervous system, skin, lungs, blood or brain respectively. The most lethal are nerve agents classified as G-agents (sarin, soman, tabun and cyclosarin) and V-agents (VX). Earlier this year, a senior Israeli official confirmed that Syria’s regime had used the nerve gas sarin against Israeli fighters. In 2013, the agent had been used to kill 1400 people in Damascus.

The Chemical Weapons Convention was established to prevent attacks like this, and its enforcement relies on monitoring and identification of chemical warfare agents. The increasing use of agents like sarin means improved tests are needed to identify agents in samples taken from the environment so that people can be protected from their effects.

Finding trace amounts of a chemical warfare agent in a sample can be challenging, especially if the agent and the liquid it’s in are both water-repellant, which is often the case. In the new study, researchers from the Defence Research and Development Establishment in India developed a method that overcomes this challenge using iron oxide nanoparticles.

“The horrifying capabilities of chemicals like sarinhave been shown in many incidents related to the military and terrorist activities,” said Dr. D. K. Dubey, corresponding author of the study from the Defence Research and Development Establishment. “Our research is an advancement in the state-of-the-art analytical techniques needed to verify the agents used in the field, to save mankind from the menace of chemical warfare agents.”

The researchers decorated iron oxide nanoparticles with a substance called poly methacyrlic acid-co-ehtylene glycol dimethacrylate. This made the particles more “sticky,” helping them attach more easily to the chemical warfare agent particles in the samples. They tweaked different aspects of the extraction method and eventually were able to identify the agents at low concentrations of about 0.1 micrograms per milliliter.

“Extracting hydrophobic chemicals, like these agents, from a hydrophobic background, like organic liquids, is a tough challenge to achieve analytically,” said Dr. Dubey. “But efficient and sensitive analytical methods are pivotal in the early detection and identification of toxic agents, so we wanted to take on this challenge. Our new method allows the efficient identification of chemical warfare agents in organic liquids; we hope it will be helpful for the international community involved in verifying and preventing the use of these devastating chemicals.”

Read more on Elsevier Connect.


Notes for editors
The article is "Analysis of chemical warfare agents in organic liquid samples with magnetic dispersive solid phase extraction and gas chromatography mass spectrometry for verification of the chemical weapons convention," by Varoon Singh, Ajay Kumar Purohit, Sridhar Chinthakindi, Raghavender D. Goud, Vijay Tak, Deepak Pardasani, Anchal Roy Shrivastava and Devendra Kumar (doi: 10.1016/j.chroma.2016.04.058). It appears in Journal of Chromatography A, volume 1448 (2016), published by Elsevier.

Copies of this paper are available to credentialed journalists upon request; please contact Elsevier's Newsroom at or +31 20 485 2492.

About Journal of Chromatography A
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation and detection methods such as mass spectrometry. Research papers deal mainly with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.

About Elsevier
Elsevier is a global information analytics business that helps scientists and clinicians to find new answers, reshape human knowledge, and tackle the most urgent human crises. For 140 years, we have partnered with the research world to curate and verify scientific knowledge. Today, we’re committed to bringing that rigor to a new generation of platforms. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirect, Scopus, SciVal, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, 39,000 e-book titles and many iconic reference works, including Gray's Anatomy. Elsevier is part of RELX, a global provider of information-based analytics and decision tools for professional and business customers.

Media contact
Annis Moreira
+31 20 485 2770