Gut Microorganisms Cause Gluten-Induced Pathology in Mouse Model of Celiac Disease

Early exposure to antibiotics, resulting in microbial imbalance, exacerbates response to gluten, according to research published in The American Journal of Pathology

Philadelphia, PA, October 8, 2015

Investigators interested in celiac disease, a chronic gastrointestinal disorder caused by an immunologic response to the ingestion of gluten, have wondered why only 2% to 5% of genetically susceptible individuals develop the disease. Attention has focused on whether environmental determinants, including gut microorganisms, contribute to the development of celiac disease. Using a humanized mouse model of gluten sensitivity, a new study in The American Journal of Pathology found that the gut microbiome can play an important role in the body’s response to gluten.

“Importantly, our data argue that the recognized increase in celiac disease prevalence in the general population over the last 50 years could be driven, at least in part, by perturbations in intestinal microbial ecology. Specific microbiota-based therapies may aid in the prevention or treatment of celiac disease in subjects with moderate genetic risk,” explained lead investigator Elena F. Verdu, MD, PhD, Associate Professor, Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON (Canada).

Using mice that express the human DQ8 gene, which makes them genetically susceptible to inflammatory responses to gluten, researchers compared immune responses and pathology in the guts of mice that differed in their gut microorganisms. The three groups were germ-free mice, clean–specific-pathogen-free (SPF) mice with microbiota free of opportunistic pathogens and Proteobacteria, and conventional SPF mice that were colonized with a mixture of microorganisms including opportunistic pathogens and Proteobacteria. For example, the microbial composition of conventional SPF mice included Staphylococcus, Streptococcus, and Helicobacter, but the clean SPF had none.

It is known that proliferation and activation of intraepithelial lymphocytes (IELs) is an early hallmark of celiac disease. Investigators observed that gluten treatment led to increased IEL counts in germ-free mice but not in clean SPF mice. The gluten-induced IEL response in germ-free mice was accompanied by increased cell death in enterocytes (the cells lining the gastrointestinal tract) as well as anatomical changes in the villi (the tissue protrusions lining the small intestine). The germ-free mice also developed antibodies to a component of gluten, known as gliadin, and displayed pro-inflammatory gliadin-specific T-cell responses. A non-gluten protein, zein, did not affect IEL counts, indicating that the response was gluten specific.

Conversely, in the mice colonized with limited opportunistic bacteria (clean SPF), the development of gluten-induced pathology was prevented compared to germ-free mice or conventional SPF mice with a more diverse microbiota. Interestingly, this protection was suppressed when clean SPF mice were supplemented with an enteroadherent E. coli isolated from a patient with celiac disease.

Gluten-induced pathology (ie, increased IELs in villi tips) was worse in conventional SPF mice than in clean SPF mice. To test if the presence of Proteobacteria such as Helicobacter and Escherichia in the conventional SPF animals affected the pathology, the investigators expanded Proteobacteria in conventional SPF mice using an antibiotic (vancomycin) during the perinatal period. Such expansion worsened gluten-induced pathology in conventional SPF mice, as measured by the number of IELs, possibly due to the presence of more Proteobacteria. “These studies demonstrate that perturbation of early microbial colonization in life and induction of dysbiosis (microbial imbalance inside the body), characterized by increased Proteobacteria, enhances the severity of gluten-induced responses in mice genetically predisposed to gluten sensitivity,” noted Dr. Verdu.

In an accompanying Commentary, Robin G. Lorenz, MD, PhD, of the Department of Pathology at the University of Alabama at Birmingham, cautions that the specific role of Proteobacteria should not be over interpreted. Dr. Lorenz writes that these findings “implicate opportunistic pathogens belonging to the Proteobacteria phylum in celiac disease; however, this does not indicate that Proteobacteria cause celiac disease.” Instead, there may be multiple potential mechanisms by which Proteobacteria enhance the exposure and immune response to gluten or gliadin, suggests Dr. Lorenz.

Celiac disease affects approximately 1% of the North American population, although it has been estimated that 83% of Americans with celiac disease are undiagnosed or misdiagnosed. According to the National Institute of Diabetes and Digestive and Kidney Diseases, celiac disease is an immune disorder in which ingestion of gluten, a protein found in wheat, rye, and barley, triggers a series of responses that result in damage to the villi lining the small intestine, which are critical for absorption of nutrients. In addition to digestive symptoms (bloating, chronic diarrhea, constipation, nausea, and vomiting), celiac disease can lead to failure to thrive, slowed growth, and weight loss in children and anemia, bone or joint pain, depression, headaches, and fatigue in adults. Other potential environmental factors related to gluten sensitivity have been explored, such as the timing of exposure to foods containing gluten or breast milk versus formula feeding, but data are inconclusive to date.


Notes for Editors
This research was supported a Canadian Institutes of Health Research grant 31 MOP#123282 to E.F.V., and partially by grants from the US National Institute of Health R01 32 DK67189 to B.J. and AGL2011-25169 from MINECO to Y.S. H.J.G. and J.L.M. received New 33 Investigator Awards from the Canadian Celiac Association and M.M. a grant from the FWF 34 Austrian Science Fund (Erwin Schrödinger Fellowship, J 3418-B19). E.F.V. and M.J. hold.Canada Research Chairs.

“Intestinal microbiota modulates gluten-induced immunopathology in humanized mice,” by Heather J. Galipeau, Justin L. McCarville, Sina Huebener, Owen Litwin, Marlies Meisel, Bana Jabri, Yolanda Sanz, Joseph A. Murray, Manel Jordana, Armin Alaedini, Fernando G. Chirdo, and Elena F. Verdu (DOI:

Author contact via: Veronica McGuire, Media Relations, Faculty of Health Sciences, McMaster University, 905-525-9140, ext. 22169 or

Editorial Commentary

Insights into Environmental Factors impacting Celiac Disease: Microbiota Modulation of Disease Pathogenesis by Robin G. Lorenz (DOI:  

Author contact: Robin G. Lorenz at +1 205 934 0676 or

This article and editorial appear online ahead of The American Journal of Pathology, Volume 185, Issue 11 (November 2015) published by Elsevier.

Full text of this study and editorial is available to credentialed journalists upon request; contact Eileen Leahy at +1 732 238 3628 or

About The American Journal of Pathology
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, seeks to publish high-quality, original papers on the cellular and molecular biology of disease. The editors accept manuscripts that advance basic and translational knowledge of the pathogenesis, classification, diagnosis, and mechanisms of disease, without preference for a specific analytic method. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, animal, biological, chemical, and immunological approaches in conjunction with morphology.

The leading global forum for reporting quality original research on cellular and molecular mechanisms of disease, The American Journal of Pathology is the most highly cited journal in Pathology – close to 40,000 cites in 2014 – with an Impact Factor of 4.591 and Eigenfactor of 0.06689 according to the 2014 Journal Citation Reports®, Thomson Reuters, 2015, and an h-index of 217 according to the 2014 SCImago Journal and Country Rank.

About Elsevier
Elsevier is a global information analytics business that helps scientists and clinicians to find new answers, reshape human knowledge, and tackle the most urgent human crises. For 140 years, we have partnered with the research world to curate and verify scientific knowledge. Today, we’re committed to bringing that rigor to a new generation of platforms. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirect, Scopus, SciVal, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, 39,000 e-book titles and many iconic reference works, including Gray's Anatomy. Elsevier is part of RELX, a global provider of information-based analytics and decision tools for professional and business customers.

Media Contact
Eileen Leahy
+1 732 238 3628

Dr. Chhavi Chauhan
Scientific Editor, The American Journal of Pathology
+1 301 634 7953