New Approach Can Help Detect and Predict Mental Health Symptoms in Adolescents by Analyzing Brain-Environment Interactions
September 3, 2024
Study in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging underscores the importance of interplay between environments, brain function, and emotional and behavioral symptoms uncovered by new machine learning and signal processing approaches
The majority of mental health disorders manifest during adolescence and relate to a multiplex interplay of neurobiological and environmental factors. Instead of considering these factors in isolation, a newly developed manifold learning technique can model brain–environmental interactions, which vastly improves detection of existing mental health symptoms and prediction of future ones compared to current methods. The study opens in new tab/window in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging opens in new tab/window, published by Elsevier, underscores the importance of considering the adolescent brain in conjunction with the environment in which it develops.
There is an increasing need to build more complex, yet nuanced, models of human biology and behavior, particularly as they relate to the development of mental health symptoms. Despite the importance of this problem, most work still considers the brain and environment in isolation or as univariate and linear interactions.
May I. Conley, MS, MPhil, PhD candidate, Yale University, Department of Psychology, co-lead author of the study says, "For a long time, developmental scientists have faced the challenge of testing theories that, in many ways, are hiding in plain sight. From the neighborhood to the family, we recognize youth’s experiences in their environments and neurobiology both influence emotional and behavioral development. Yet, we haven’t had methods that capture the complexity of this interaction precisely."
To address this, the investigators turned to manifold learning, a promising class of algorithms for uncovering latent structure from high-dimensional biomedical data like functional magnetic resonance imaging (fMRI). They developed the exogenous PHATE (E-PHATE) algorithm to model brain–environment interactions. Using the Adolescent Brain and Cognitive Development (ABCD) dataset, supported by the National institutes of Health and other federal partners, they used E-PHATE embeddings of participants’ brain activation during emotional and cognitive processing to predict individual differences in cognition and emotional and behavioral symptoms, both cross-sectionally and longitudinally.
One of the most noteworthy findings of the study was the effect of combining additional environmental variables into the exogenous view of E-PHATE. Researchers saw a greater correlation of brain activity with mental health symptoms through modeling either the neighborhood or familial environments in E-PHATE, but by combining those metrics along with others, the model kept improving its representation. This was specific to adding environmental information, though, rather than an effect of the number of variables (which was tested with additional analyses). This finding reinforces the need to consider the multiple environments youth navigate in conjunction with how their brain takes in information from those environments.
Erica L. Busch, MS, MPhil, PhD candidate, Yale University, Department of Psychology, first author of the study, continues, "I was excited to see that the principles of modeling neuroimaging data I’d been developing for basic science questions could be quickly adapted for clinical applications and yielded such striking results and mechanistic insights. It also underscored how fruitful interdisciplinary collaborations can be; my fellow graduate student May Conley and her advisor Dr. Baskin-Sommers are experts in biopsychosocial models of mental health symptoms and combined with my computational experience, we each played key roles in defining the question and approaches of this project."
The work highlights the clinical applications of new machine learning and signal processing approaches. Specifically, it underscores the significance and complexity of the relationship between adolescent brains and environments as they relate to emotional and behavioral symptoms. The investigators present a general-purpose method with broad applications in both clinical and non-clinical domains.
Editor-in-Chief of Biological Psychiatry: Cognitive Neuroscience and Neuroimaging Cameron S. Carter, MD, University of California Irvine, comments, "Decades of developmental work suggests that both neurobiology and environmental context shape the development of mental health symptoms. This study demonstrates the suitability of more computational methods, like manifold learning, for modeling complex multimodal developmental data, and they have great potential to enhance research on the neurobiology of emotional and behavioral symptoms in adolescents."
The current study is novel along three main dimensions:
By characterizing both neural and environmental data as multivariate measurements.
By considering the interaction between them as nonlinear and lower-dimensional (i.e., existing along a latent manifold, like most real-world data does).
By allowing for simultaneous hypothesis- and data-driven discovery of a meaningful representation of these signals.
Senior author Arielle Baskin-Sommers, PhD, Yale University, Department of Psychology, concludes, "It is important that, as a field, we improve our ability to capture the complex transactions between the person and their environment. However, to estimate these transactions, new methods are needed to handle multiple types of data and estimate their interactions within individuals. The method produced from this interdisciplinary collaboration is one example of how we can estimate these complex transactions."
Notes for editors
The article is "Manifold learning uncovers nonlinear interactions between the adolescent brain and environment that predict emotional and behavioral problems," by Erica L. Busch, MS, MPhil, May I. Conley, MS, MPhil, and Arielle Baskin-Sommers, PhD (https://doi.org/10.1016/j.bpsc.2024.07.001 opens in new tab/window). It appears in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging opens in new tab/window, published by Elsevier.
The article is openly available for 30 days at https://www.biologicalpsychiatrycnni.org/article/S2451-9022(24)00173-3/fulltext opens in new tab/window.
Copies of this paper are also available to credentialed journalists upon request; please contact Rhiannon Bugno at [email protected] opens in new tab/window. Journalists wishing to interview the study’s authors should contact Erica L. Busch at [email protected] opens in new tab/window.
The authors’ affiliations and disclosures of financial and conflicts of interests are available in the article.
Cameron S. Carter, MD, is Chair of the Department of Psychiatry & Human Behavior at the University of California, Irvine School of Medicine. His disclosures of financial and conflicts of interests are available here opens in new tab/window.
This work was supported by NSF Graduate Research Fellowship Program, Award 2139841 and the National Institute on Drug Abuse at the National Institutes of Health under NIH Grant R21DA057592. The ABCD Study is supported by the National Institutes of Health and additional federal partners. The content reported here is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
About Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging opens in new tab/window is an official journal of the Society of Biological Psychiatry opens in new tab/window, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal focuses on studies using the tools and constructs of cognitive neuroscience, including the full range of non-invasive neuroimaging and human extra- and intracranial physiological recording methodologies. It publishes both basic and clinical studies, including those that incorporate genetic data, pharmacological challenges, and computational modeling approaches. The 2023 Journal Impact FactorTM score, from Clarivate, for Biological Psychiatry: Cognitive Neuroscience and Neuroimaging is 5.7. www.sobp.org/bpcnni opens in new tab/window
About Elsevier
As a global leader in scientific information and analytics, Elsevier helps researchers and healthcare professionals advance science and improve health outcomes for the benefit of society. We do this by facilitating insights and critical decision-making with innovative solutions based on trusted, evidence-based content and advanced AI-enabled digital technologies.
We have supported the work of our research and healthcare communities for more than 140 years. Our 9,500 employees around the world, including 2,500 technologists, are dedicated to supporting researchers, librarians, academic leaders, funders, governments, R&D-intensive companies, doctors, nurses, future healthcare professionals and educators in their critical work. Our 2,900 scientific journals and iconic reference books include the foremost titles in their fields, including Cell Press, The Lancet and Gray’s Anatomy.
Together with the Elsevier Foundation opens in new tab/window, we work in partnership with the communities we serve to advance in science, research and healthcare in developing countries and around the world.
Elsevier is part of RELX opens in new tab/window, a global provider of information-based analytics and decision tools for professional and business customers. For more information on our work, digital solutions and content, visit www.elsevier.com.