Statistical Parametric Mapping: The Analysis of Functional Brain Images

1st Edition

Editors: William Penny Karl Friston John Ashburner Stefan Kiebel Thomas Nichols
Hardcover ISBN: 9780123725608
eBook ISBN: 9780080466507
Imprint: Academic Press
Published Date: 2nd November 2006
Page Count: 656
142.00 + applicable tax
155.00 + applicable tax
118.00 + applicable tax
95.00 + applicable tax
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Description

In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis.

Key Features

  • An essential reference and companion for users of the SPM software
  • Provides a complete description of the concepts and procedures entailed by the analysis of brain images
  • Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data
  • Stands as a compendium of all the advances in neuroimaging data analysis over the past decade
  • Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes
  • Structured treatment of data analysis issues that links different modalities and models
  • Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible

Readership

Scientists actively involved in neuroimaging research and the analysis of data, as well as students at a masters and doctoral level studying cognitive neuroscience and brain imaging.

Table of Contents

INTRODUCTION
A short history of SPM.
Statistical parametric mapping.
Modelling brain responses.

SECTION 1: COMPUTATIONAL ANATOMY Rigid-body Registration.
Nonlinear Registration.
Segmentation.
Voxel-based Morphometry.

SECTION 2: GENERAL LINEAR MODELS The General Linear Model.
Contrasts & Classical Inference.
Covariance Components.
Hierarchical models.
Random Effects Analysis.
Analysis of variance.
Convolution models for fMRI.
Efficient Experimental Design for fMRI.
Hierarchical models for EEG/MEG.

SECTION 3: CLASSICAL INFERENCE Parametric procedures for imaging.
Random Field Theory & inference.
Topological Inference.
False discovery rate procedures.
Non-parametric procedures.

SECTION 4: BAYESIAN INFERENCE Empirical Bayes & hierarchical models.
Posterior probability maps.
Variational Bayes.
Spatiotemporal models for fMRI.
Spatiotemporal models for EEG.

SECTION 5: BIOPHYSICAL MODELS Forward models for fMRI.
Forward models for EEG and MEG.
Bayesian inversion of EEG models.
Bayesian inversion for induced responses.
Neuronal models of ensemble dynamics.
Neuronal models of energetics.
Neuronal models of EEG and MEG.
Bayesian inversion of dynamic models
Bayesian model selection & averaging.

SECTION 6: CONNECTIVITY Functional integ

Details

No. of pages:
656
Language:
English
Copyright:
© Academic Press 2007
Published:
Imprint:
Academic Press
eBook ISBN:
9780080466507
Hardcover ISBN:
9780123725608

About the Editor

William Penny

Affiliations and Expertise

Functional Imaging Laboratory, Wellcome Department of Imaging Neuroscience, University College London, London, UK

Karl Friston

Affiliations and Expertise

Functional Imaging Laboratory, Wellcome Department of Imaging Neuroscience, University College London, London, UK

John Ashburner

Affiliations and Expertise

Functional Imaging Laboratory, Wellcome Department of Imaging Neuroscience, University College London, London, UK

Stefan Kiebel

Thomas Nichols