Skip to main content

Save up to 30% on Elsevier print and eBooks with free shipping. No promo code needed.

Save up to 30% on print and eBooks.

Semiconductor Nanodevices

Physics, Technology and Applications

  • 1st Edition, Volume 20 - October 24, 2021
  • Editor: David Ritchie
  • Language: English
  • Paperback ISBN:
    9 7 8 - 0 - 1 2 - 8 2 2 0 8 3 - 2
  • eBook ISBN:
    9 7 8 - 0 - 1 2 - 8 2 2 0 8 4 - 9

Semiconductor Nanodevices: Physics, Technology and Applications explores recent advances in the field. The behaviour of these devices is controlled by regions of nanoscale di… Read more

Semiconductor Nanodevices

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Institutional subscription on ScienceDirect

Request a sales quote

Semiconductor Nanodevices: Physics, Technology and Applications explores recent advances in the field. The behaviour of these devices is controlled by regions of nanoscale dimensions which typically determine the local density of electronic states and lead to the observation of a range of quantum effects with significant potential for exploitation.

The book opens with an introduction describing the development of this research field over the past few decades which contrasts quantum-controlled devices to conventional nanoscale electronic devices where an emphasis has often been placed on minimising quantum effects.

This introduction is followed by seven chapters describing electrical nanodevices and five chapters describing opto-electronic nanodevices; individual chapters review important recent advances.

These chapters include specific fabrication details for the structures and devices described as well as a discussion of the physics made accessible. It is an important reference source for physicists, materials scientists and engineers who want to learn more about how semiconductor-based nanodevices are being developed for both science and potential industrial applications.

The section on electrical devices includes chapters describing the study of electron correlation effects using transport in quantum point contacts and tunnelling between one-dimensional wires; the high-frequency pumping of single electrons; thermal effects in quantum dots; the use of silicon quantum dot devices for qubits and quantum computing; transport in topological insulator nanoribbons and a comprehensive discussion of noise in electrical nanodevices.

The optical device section describes the use of self-assembled III-V semiconductor nanostructures embedded in devices for a range of applications, including quantum dots for single and entangled photon sources, quantum dots and nanowires in lasers and quantum dots in solar cells.