COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Ni-free Ti-based Shape Memory Alloys - 1st Edition - ISBN: 9780128094013, 9780128093849

Ni-free Ti-based Shape Memory Alloys

1st Edition

Authors: Hee Kim Shuichi Miyazaki
eBook ISBN: 9780128093849
Hardcover ISBN: 9780128094013
Imprint: Butterworth-Heinemann
Published Date: 17th September 2018
Page Count: 219
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Ni-free Ti-based Shape Memory Alloys reviews the fundamental issues of biomedical beta-type Ti base shape memory and superelastic alloys, including martensitic transformation, shape memory and superelastic properties, alloy development, thermomechanical treatment and microstructure control, and biocompatibility. Some unique properties, such as large nonlinear elastic behavior and low Young’s modulus, observed in metastable Ti alloys are discussed on the basis of phase stability. As it is expected that superelastic Ti alloys will further expand the applications of shape memory alloys within the biomedical field, this book provides a comprehensive review of these new findings in Ti-base shape memory and superelastic alloys.

Key Features

  • Includes coverage of phase transformations in titanium alloys
  • Discusses mechanical properties and alloy development
  • Presents a review of Ti-based shape alloys and their applications


Researchers and engineers working in materials science, Graduate students and researchers in biomedical materials, Graduate students and researchers in metallurgy and light alloys, Researchers and engineers in titanium industry

Table of Contents

1. Martensitic transformation characteristics
Transformation temperature
Crystal structure
Self-accommodation morphology
Omega phase transformation

2. Shape memory effect and superelasticity
Ti-Nb base alloys
Ti-Mo base alloys
Ti-Ta base alloys
Ti-Zr base alloys
Ti-Au base alloys

3. Effect of alloying elements and alloy development
Substitutional alloying elements
Interstitial alloying elements
Alloy development strategy

4. Thermomechanical treatment and microstructure control
Deformation texture and recrystallization texture

5. Unique properties of meta-stable beta Ti alloys
Gum metal
Low Young’s modulus
{332} twinning

6. Biocompatibility of superelastic beta Ti alloys

7. Fabrication and characterization of shape memory alloys


No. of pages:
© Butterworth-Heinemann 2018
17th September 2018
eBook ISBN:
Hardcover ISBN:

About the Authors

Hee Kim

Prof. Hee Young Kim received his Ph. D. in Materials Science and Engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1998. From 1999 to 2001 he was a research associate in the Graduate School of Engineering at Kyoto University. In 2001,he became an assistant professor at Tohoku University. During 1999-2001, he worked on the high temperature deformation behavior of intermetallic compounds. He joined the Institute of Materials Science at University of Tsukuba in 2002 as an assistant professor, and was promoted to associate professor in 2007 and professor in 2014. Since joining the University of Tsukuba, he has expanded his research program into functional metallic materials, with an emphasis on the development of novel shape memory alloys for biomedical applications, high temperature applications, and micro-actuators. Prof. Kim has authored or co-authored more than 150 research publications including 25 papers published in Acta Materialia. He received a Young Researcher Award in 2002, Murakami Young Researcher Award in 2009, and Meritorious Award in 2013 from the Japan Institute of Metals. He was honored as the best faculty member in the University of Tsukuba in 2014.

Affiliations and Expertise

University of Tsukuba, Tsukuba, Japan

Shuichi Miyazaki

Prof. Shuichi Miyazaki obtained a Ph. D. degree in Materials Science and Engineering from Osaka University in 1979. After receiving his Ph. D., he immediately joined the University of Tsukuba where he is currently a Professor in the Division of Materials Science. Prof. Miyazaki has co-edited and co-authored 7 books, including “Shape Memory Alloys”, “Shape Memory Alloys for Biomedical Applications, “Thin Film Shape Memory Alloys”, and “Shape Memory and Superelastic Alloys”. He has also co-authored 26 book chapters and co-edited 12 special issues in International Journals. He has also co-authored 434 technical papers and 71 review papers published in Materials Science and Engineering, especially relating to shape memory alloys including TiNi alloys, Cu-Al-Ni alloy, Ni-free Ti-base alloys, etc.

Prof. Miyazaki has been the recipient of sixteen awards, including the Yamazaki-Teiichi Prize from the Foundation for promotion of Material Science and Technology of Japan in 2002, the Minister Award from the Ministry of Education, Culture, Sports, Science and Technology, Japan in 2004, the ISI Highly Cited Researcher in Materials Science Field from Thomson Reuters in 2004, the First place in Class 5 at the International Metallographic Contest from the International Metallographic Society/ ASM International in 2006, the Gold Medal Award from the Japan Institute of Metals in 2014, the Tsukuba Prize from The Science and Technology Promotion Foundation of Ibaraki in 2014, and the Honda Memorial Prize from the Honda Memorial Foundation in 2015.

Prof. Miyazaki has held several different roles including serving as the President of the Japan Institute of Metals, a Cooperation Member of the Science Council of Japan, a Member of International Advisory Committee of the International Conference Organization on Martensitic Transformations, a Board Member of the International Organization of Shape Memory and Superelastic Technologies in ASM International, and a Board Member of the Honda Memorial Foundation.

Affiliations and Expertise

Professor, Division of Materials Science, University of Tsukuba, Japan

Ratings and Reviews