Introduction to Operator Theory and Invariant Subspaces

Introduction to Operator Theory and Invariant Subspaces

1st Edition - October 1, 1988

Write a review

  • Author: B. Beauzamy
  • eBook ISBN: 9780080960890

Purchase options

Purchase options
DRM-free (PDF)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

This monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given.Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples.In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions.

Table of Contents

  • I. General Theory. Operators on Finite-Dimensional Spaces. Elementary Spectral Theory. The Orbits of a Linear Operator.
    II. Compactness and its Applications. Spectral Theory for Compact Operators. Topologies on the Space of Operators.
    III. Banach Algebras Techniques. Banach Algebras. Normal Operators.
    IV. Analytic Functions. Banach Spaces of Analytic Functions. The Multiplication by ei&thgr; on H2 (&Pgr;) and L2 (&Pgr;).
    V. Dilations and Extensions. Minimal Dilation of a Contraction. The H Functional Calculus. C1-Contractions.
    VI. Invariant Subspaces. Positive Results. A Counter-Example to the Invariant Subspace Problem.
    Exercises.
    Index.
    References.

Product details

  • No. of pages: 357
  • Language: English
  • Copyright: © North Holland 1988
  • Published: October 1, 1988
  • Imprint: North Holland
  • eBook ISBN: 9780080960890

About the Author

B. Beauzamy

Ratings and Reviews

Write a review

There are currently no reviews for "Introduction to Operator Theory and Invariant Subspaces"