Comprehensive Organic Synthesis - 2nd Edition - ISBN: 9780080977423, 9780080977430

Comprehensive Organic Synthesis

2nd Edition

Editor-in-Chiefs: Paul Knochel Gary A Molander
eBook ISBN: 9780080977430
Hardcover ISBN: 9780080977423
Imprint: Elsevier
Published Date: 11th April 2014
Page Count: 9806
Tax/VAT will be calculated at check-out Price includes VAT (GST)
5995.00
3635.00
4510.00
Unavailable
Price includes VAT (GST)
× Read this ebook on your PC, Mac, Apple iOS and Andriod mobile devices and eReader

This ebook is protected by Adobe Content Server digital rights management.

For more information on how to use .acsm files please click the Ebook Format Help link.

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

The second edition of Comprehensive Organic Synthesis—winner of the 2015 PROSE Award for Multivolume Reference/Science from the Association of American Publishers—builds upon the highly respected first edition in drawing together the new common themes that underlie the many disparate areas of organic chemistry. These themes support effective and efficient synthetic strategies, thus providing a comprehensive overview of this important discipline.

Fully revised and updated, this new set forms an essential reference work for all those seeking information on the solution of synthetic problems, whether they are experienced practitioners or chemists whose major interests lie outside organic synthesis. In addition, synthetic chemists requiring the essential facts in new areas, as well as students completely new to the field, will find Comprehensive Organic Synthesis, Second Edition an invaluable source, providing an authoritative overview of core concepts.

Key Features

  • Winner of the 2015 PROSE Award for Multivolume Reference/Science from the Association of American Publishers
  • Contains more than170 articles across nine volumes, including detailed analysis of core topics such as bonds, oxidation, and reduction
  • Includes more than10,000 schemes and images
  • Fully revised and updated; important growth areas—including combinatorial chemistry, new technological, industrial, and green chemistry developments—are covered extensively

Readership

University and research libraries, especially with collections in organic or heterocyclic chemistry; corporations engaged in industrial chemistry or organic synthesis and government agencies regulating these areas.

Table of Contents

  • Editors-in-Chief
  • Volume Editors
  • Preface
  • Permission Acknowledgments
  • Volume 1: Additions to C–X Π-Bonds, Part 1
    • Introduction to Volume 1: Additions to CX π-Bonds, Part 1
    • 1.01 Carbanions of Alkali and Alkaline-Earth Cations: (II) Selectivity of Carbonyl Addition Reactions
      • Abstract
      • Glossary
      • 1.01.1 Introduction
      • 1.01.2 Additions of Achiral Reagents to Chiral Substrates
      • 1.01.3 Additions of Chiral Reagents to Achiral Substrates
      • References
    • 1.02 Organosilicon Reagents: Vinyl-, Alkynyl-, and Arylsilanes
      • Abstract
      • Glossary
      • 1.02.1 Introduction
      • 1.02.2 Characteristics of Organosilicon Compounds
      • 1.02.3 Vinylsilanes
      • 1.02.4 Alkynylsilanes
      • 1.02.5 Arylsilanes
      • References
    • 1.03 Organoaluminum Reagents
      • Abstract
      • Glossary
      • 1.03.1 Introduction from the View Point on the Preparation of Organoaluminum Reagents
      • 1.03.2 Uncatalyzed 1,2-Addition of Organoaluminum Reagents
      • 1.03.3 Enantioselective 1,2-Addition of Organoaluminum Reagents to Carbonyl Compounds Catalyzed by Chiral Metal Complex
      • 1.03.4 Rational Design of Organoaluminum Lewis Acid for Selective 1,2-Addition
      • References
    • 1.04 Regio-, Diastereo-, and Enantioselective Addition of Organocopper Reagents onto CO and CN Bonds
      • Abstract
      • Glossary
      • 1.04.1 Introduction
      • 1.04.2 1,2-Additions to Aldehydes and Ketones
      • 1.04.3 1,2 Addition to Imines and Derivatives
      • 1.04.4 Catalytic and Asymmetric Copper-Mediated Reactions
      • 1.04.5 Miscellaneous
      • 1.04.6 Conclusion
      • References
    • 1.05 Organotitanium and Organozirconium Reagents
      • Abstract
      • Glossary
      • 1.05.1 Introduction
      • 1.05.2 Preparation of Principal Organotitanium and Organozirconium Reagents
      • 1.05.3 Carbonyl Addition Reactions
      • References
    • 1.06 Organochromium Reagents
      • Abstract
      • 1.06.1 Introduction
      • 1.06.2 C–C Single Bond Formation
      • 1.06.3 C–C Double Bond Formation
      • 1.06.4 Miscellaneous Carbon–Carbon Bond Formation
      • 1.06.5 Conclusion
      • References
    • 1.07 Recent Advances in Organozinc Reagents
      • Abstract
      • Glossary
      • 1.07.1 Introduction
      • 1.07.2 Addition of Organozinc Reagents
      • 1.07.3 Addition of Reformatsky Reagents
      • 1.07.4 Applications of Dialkylzincs as Radical Reagents
      • References
    • 1.08 Organocerium Reagents
      • Glossary
      • 1.08.1 Introduction
      • 1.08.2 Organocerium Reagents
      • 1.08.3 Cerium Enolates
      • 1.08.4 Application in Organic Synthesis
      • References
    • 1.09 Samarium and Ytterbium Reagents
      • Abstract
      • Glossary
      • 1.09.1 Introduction and Scope
      • 1.09.2 Zero Valent Yb and Sm
      • 1.09.3 Divalent Sm and Yb
      • 1.09.4 Trivalent Sm and Yb
      • References
    • 1.10 Lewis Acid Promoted Addition Reactions of Organometallic Compounds
      • Abstract
      • 1.10.1 Introduction
      • 1.10.2 LAs Addition to Aldehydes and Ketones
      • 1.10.3 LAs in Additions to Acid Derivatives
      • 1.10.4 LAs in Additions to Imines and Related Derivatives
      • References
    • 1.11 Nucleophilic Addition of Nonstabilized Carbanions to Imines and Imine Derivatives
      • Abstract
      • Glossary
      • 1.11.1 Introduction
      • 1.11.2 1,2-Additions of Unstabilized Carbanions to Imines and Imine Derivatives
      • 1.11.3 Summary and Outlook
      • References
    • 1.12 Sulfur and Selenium Stabilization
      • Abstract
      • Glossary
      • 1.12.1 Introduction
      • 1.12.2 Sulfenyl-Stabilized Carbanions
      • 1.12.3 Sulfinyl-Stabilized Carbanions
      • 1.12.4 Sulfonyl-Stabilized Carbanions
      • 1.12.5 Sulfonimidoyl-Stabilized Carbanions
      • 1.12.6 Selenium-Stabilized Carbanions
      • References
    • 1.13 Benzoin and Aza-benzoin
      • Abstract
      • Glossary
      • 1.13.1 Introduction
      • 1.13.2 Benzoin and Aza-Benzoin Condensations with Stoichiometric Acyl Anion Equivalents
      • 1.13.3 Cyanide Ion-Catalyzed Benzoin Condensations
      • 1.13.4 NHC-Catalyzed Benzoin Condensations
      • 1.13.5 Other Catalytic Benzoin Condensations
      • 1.13.6 Vinylogous Reactivity: The Homoaldol Reaction
      • 1.13.7 Acknowledgments
      • References
    • 1.14 Oxygen-Stabilized Carbanions
      • Abstract
      • Glossary
      • 1.14.1 Introduction
      • 1.14.2 sp3-Hybridized α-Oxygenorganolithiums
      • 1.14.3 sp2-Hybridized Organolithiums
      • 1.14.4 Conclusion
      • References
    • 1.15 Olefination of Carbonyl Compounds by Main-Group Element Mediators
      • Abstract
      • Glossary
      • 1.15.1 Introduction
      • 1.15.2 Sulfur-Mediated Olefination Methods
      • 1.15.3 Phosphorus-Mediated Olefination Methods
      • 1.15.4 Silicon- and Boron-Mediated Olefination Methods
      • References
    • 1.16 Epoxidation and Related Processes
      • Abstract
      • Glossary
      • 1.16.1 Introduction
      • 1.16.2 General Considerations
      • 1.16.3 Addition to CO π-Bonds
      • 1.16.4 Addition to CN π-Bonds
      • Acknowledgment
      • References
    • 1.17 Addition of Heteroatom Nucleophiles to CO and CN pi Bonds
      • Abstract
      • Glossary
      • 1.17.1 Introduction
      • 1.17.2 Additions to CN pi Bonds
      • 1.17.3 Additions to CO pi Bonds
      • References
    • 1.18 CN Addition to CO and CN Bonds
      • Abstract
      • Glossary
      • 1.18.1 Important Safety Notice – Hazardous Materials
      • 1.18.2 Introduction
      • 1.18.3 Addition of Cyanide to Aldehydes and Ketones
      • 1.18.4 Addition of Cyanide to Imines and Related Compounds
      • References
    • 1.19 Carbonyl and Imine Activation
      • Abstract
      • Glossary
      • 1.19.1 Introduction
      • 1.19.2 Differences between Hydrogen-Bonding Catalysts and Brønsted Acid Catalysts
      • 1.19.3 Activation of Carbonyl Compounds and Imine Derivatives
      • References
  • Volume 2: Additions to C–X Π-Bonds, Part 2
    • Introduction to Volume 2: Additions to CX π-Bonds, Part 2
    • 2.01 Allylborons
      • Abstract
      • Glossary
      • 2.01.1 Introduction
      • 2.01.2 Overview of Allylboranes
      • 2.01.3 Preparation of Allylboranes
      • 2.01.4 Structural Analogs of Allylboranes
      • 2.01.5 Allylation of Aldehydes
      • 2.01.6 Allylation of Ketones
      • 2.01.7 Allylation of Carbonyls Produced In Situ
      • 2.01.8 Allylation of Imines
      • 2.01.9 Allylation of Other Carbonyl Derivatives
      • 2.01.10 Allylation of Other π-Systems
      • 2.01.11 Other Reactions of Allylboranes
      • 2.01.12 Allylboranes in Total Synthesis
      • References
    • 2.02 Allylsilanes, Allylstannanes, and Related Compounds
      • Abstract
      • Glossary
      • 2.02.1 Introduction
      • 2.02.2 Overview of Allylsilanes, -Germanes, -Stannanes, and -Plumbums
      • 2.02.3 Allylsilanes
      • 2.02.4 Allylgermanes
      • 2.02.5 Allylstannanes
      • 2.02.6 Allylplumbums
      • References
    • 2.03 Prins Reactions and Carbonyl, Imine, and Thiocarbonyl Ene Reactions
      • Abstract
      • Glossary
      • 2.03.1 Introduction
      • 2.03.2 Intermolecular Ene Reactions
      • 2.03.3 Intramolecular Ene Reactions
      • 2.03.4 Oxonium Ene Reactions, Prins Cyclizations, and Prins-Pinacol Reactions
      • 2.03.5 Imine Ene Reactions
      • 2.03.6 Thiocarbonyl Ene and Prins Reactions
      • References
    • 2.04 Heteroatom-Stabilized Allylic Anions
      • Abstract
      • Glossary
      • 2.04.1 Introduction
      • 2.04.2 Silicon-Substituted Allylic Anions
      • 2.04.3 Phosphorus-Substituted Allylic Anions
      • 2.04.4 Sulfur-Substituted Allylic Anions
      • 2.04.5 Nitrogen-Substituted Allylic Anions
      • 2.04.6 Oxygen-Substituted Allylic Anions
      • 2.04.7 Halogen-Substituted Allylic Anions
      • References
    • 2.05 Propargyl and Allenyl Organometallics
      • Abstract
      • Glossary
      • 2.05.1 Introduction
      • 2.05.2 Lithium and Magnesium
      • 2.05.3 Boron
      • 2.05.4 Zinc
      • 2.05.5 Copper
      • 2.05.6 Tin
      • 2.05.7 Silicon
      • 2.05.8 Chromium
      • 2.05.9 Titanium and Zirconium
      • 2.05.10 Other Metals
      • References
    • 2.06 Formation of Enolates
      • Abstract
      • 2.06.1 Introduction
      • 2.06.2 Alkali Metal Enolates
      • 2.06.3 Magnesium Enolates
      • 2.06.4 Boron Enolates
      • 2.06.5 Aluminum Enolates
      • 2.06.6 Tin Enolates
      • 2.06.7 Titanium Enolates
      • 2.06.8 Zirconium Enolates
      • 2.06.9 Copper Enolates and Enolates from Cuprates
      • 2.06.10 Zinc Enolates
      • 2.06.11 Other Transition Metal Enolates
      • References
    • 2.07 The Aldol Reaction: Organocatalysis Approach
      • Abstract
      • Glossary
      • 2.07.1 Introduction
      • 2.07.2 Enamine Catalysis
      • 2.07.3 Brønsted Acid and Hydrogen-Bond Catalysis
      • 2.07.4 Brønsted Base Catalysis Including Bifunctional Catalysis
      • 2.07.5 Phase-Transfer Catalysis
      • 2.07.6 Supported Organocatalysis
      • 2.07.7 Conclusions
      • References
    • 2.08 The Aldol Reaction: Group I and Group II Enolates
      • Abstract
      • 2.08.1 Introduction
      • 2.08.2 Formation and Aldol Reactions of Regio-Defined Enolates
      • 2.08.3 Simple Diastereoselection
      • 2.08.4 Diastereofacial Selectivity
      • 2.08.5 Equilibration; Thermodynamic Control
      • References
    • 2.09 The Aldol Reaction: Group IV Enolates (Mukaiyama, Enol Ethers)
      • Abstract
      • Glossary
      • 2.09.1 Introduction
      • 2.09.2 General Background
      • 2.09.3 Silicon Enolate
      • 2.09.4 Tin Enolate
      • 2.09.5 Germanium and Lead Enolates
      • 2.09.6 Summary
      • References
    • 2.10 The Aldol Reaction: Transition Metal Enolate
      • Abstract
      • Glossary
      • 2.10.1 Introduction
      • 2.10.2 Transition-Metal-Catalyzed Direct Aldol Reaction
      • 2.10.3 Transition-Metal-Catalyzed Aldol Reaction Employing Latent Enolates
      • 2.10.4 Conclusions
      • References
    • 2.11 Aldolase-Catalyzed CC Bond Formation of Carbohydrate Synthesis
      • Abstract
      • Glossary
      • 2.11.1 Introduction
      • 2.11.2 Sialic Acid Aldolase-Catalyzed Synthesis
      • 2.11.3 Deoxyribose 5-Phosphate Aldolase-Catalyzed Synthesis
      • 2.11.4 Fructose-6-Phosphate Aldolase-Catalyzed Synthesis
      • 2.11.5 Promiscuous Enzyme Function – Hydroxynitrile Lyase-Catalyzed Nitroaldol Reaction
      • 2.11.6 Conclusion
      • Acknowledgments
      • References
    • 2.12 Zinc Enolates: The Reformatsky and Blaise Reactions
      • Abstract
      • Glossary
      • 2.12.1 Introduction
      • 2.12.2 Reformatsky Reagent
      • 2.12.3 Reaction with Aldehyde and Ketone Substrates
      • 2.12.4 Reaction with Other Substrates
      • 2.12.5 Blaise Reaction
      • References
    • 2.13 The Henry (Nitroaldol) Reaction
      • Abstract
      • Glossary
      • 2.13.1 Introduction
      • 2.13.2 Synthetic Application of Henry Reaction
      • 2.13.3 Stereoselective Henry Reaction
      • 2.13.4 Synthetic Application in Domino Reactions
      • 2.13.5 Outlook
      • References
    • 2.14 Other Condensation Reactions (Knoevenagel, Perkin, Darzens)
      • Abstract
      • 2.14.1 Introduction
      • 2.14.2 Knoevenagel Condensation
      • 2.14.3 Perkin Condensation
      • 2.14.4 Darzens Condensation
      • References
    • 2.15 Metal Homoenolates
      • Abstract
      • Glossary
      • 2.15.1 Introduction
      • 2.15.2 Preparation and Reactivity of Metal Homoenolates
      • 2.15.3 Homoenolates Generated by N-Heterocyclic Carbene (NHC)
      • 2.15.4 Transition Metal-Catalyzed Nucleophilic Allylation of Carbonyls
      • 2.15.5 Homoallylation of Carbonyls with Butenyl Carbanion Equivalent
      • 2.15.6 Conclusion
      • References
    • 2.16 The Bimolecular and Intramolecular Mannich and Related Reactions
      • Abstract
      • Glossary
      • 2.16.1 Introduction
      • 2.16.2 Metal-Catalyzed Mannich-Type Reactions
      • 2.16.3 Organocatalyzed Mannich-Type Relations
      • References
    • 2.17 Addition to N-Acyliminium Ions of Heteroatoms such as Oxygen, Nitrogen, Sulfur, and Selenium as Internal Nucleophiles
      • Abstract
      • Glossary
      • 2.17.1 Introduction
      • 2.17.2 Formation of the CC Bond: General Aspects
      • 2.17.3 Formation of the CX Bond (X=O, N, S, and Se)
      • 2.17.4 N-Acyliminium Cation Oxacyclization
      • 2.17.5 Azacyclization of N-Acyliminium Cations
      • 2.17.6 Thia- and Selenacyclization of N-Acyliminium Ions
      • 2.17.7 Common Approaches Using Oxa-, Aza-, and Thiacyclizations
      • 2.17.8 Common Reactions to Oxa- and Azacyclizations
      • 2.17.9 Concluding Remarks
      • Acknowledgments
      • References
  • Volume 3: Carbon–Carbon Bond Formation
    • Introduction to Volume 3: CarbonCarbon Bond Formation
    • 3.01 Alkylations of Enols and Enolates
      • Abstract
      • Glossary
      • 3.01.1 Introduction
      • 3.01.2 Formation and Reactivity of Enolates
      • 3.01.3 Diastereoselective Enolate Alkylations
      • 3.01.4 Enantioselective Enolate Alkylation
      • 3.01.5 Miscellaneous
      • 3.01.6 Conclusion
      • References
    • 3.02 Organolithium Compounds Bearing a Phenyl-, a Vinyl-, and/or a Seleno Group on their Carbanionic Centers: Synthesis by Se/Li Exchange and Unusual Synthetic Applications
      • Abstract
      • 3.02.1 Generalities
      • 3.02.2 Reactivity of Selenides and Functionalized Selenides toward Organolithiums
      • 3.02.3 Reactivity of Selenides and Functionalized Selenides toward Elemental Lithium and Metal Arenides
      • 3.02.4 Reactivity of Benzyllithiums: Exceptional Family of Organometallics
      • 3.02.5 Conclusion
      • References
    • 3.03 Alkylation of α-Sulfur-Containing Carbanions
      • Abstract
      • 3.03.1 Introduction
      • 3.03.2 Alkylation of α-Thiocarbanions
      • 3.03.3 Alkylation of α-Sulfinyl Carbanions
      • 3.03.4 Alkylation of α-Sulfonyl Carbanions
      • 3.03.5 Alkylations of Sulfoximinoyl Carbanions
      • 3.03.6 Alkylation of Sulfonates, Sulfonamides, and Sulfur Ylides
      • 3.03.7 Alkylation of Carbanions Bearing Two Geminal Sulfur Atoms
      • References
    • 3.04 Alkylations of Nonstabilized Carbanions
      • Abstract
      • Glossary
      • 3.04.1 Introduction
      • 3.04.2 Generation and Nucleophilic Displacement of Alkyl and Alkenyl Polar Organometallics
      • 3.04.3 Allylation of Nonstabilized (Hard) Nucleophiles
      • 3.04.4 Carbometalations and Related Reactions
      • 3.04.5 Transition Metal-Catalyzed Cross-Coupling Alkylations with Zn- and Mg–Alkyl Carbanions
      • References
    • 3.05 Polyene Cyclizations
      • Abstract
      • 3.05.1 Introduction
      • 3.05.2 Brønsted Acid-Catalyzed Cyclizations
      • 3.05.3 Epoxide-Based Openings
      • 3.05.4 Other Functional Groups for Initiation
      • 3.05.5 Metal-Mediated Polyene Cyclizations
      • 3.05.6 Halonium-Initiated Cyclizations
      • 3.05.7 Radical-Initiated Cyclizations
      • References
    • 3.06 Transannular Electrophilic Cyclizations
      • Abstract
      • Glossary
      • 3.06.1 Introduction
      • 3.06.2 Eight-Membered Rings
      • 3.06.3 Nine-Membered Rings
      • 3.06.4 Ten-Membered Rings
      • 3.06.5 Eleven-Membered Rings
      • 3.06.6 Other Rings
      • 3.06.7 Formation of Carbon–Heteroatom Bonds
      • References
    • 3.07 Coupling Reactions Between sp3-Carbon Centers
      • Abstract
      • 3.07.1 Introduction
      • 3.07.2 Homocoupling Reactions
      • 3.07.3 Direct Cross-Coupling
      • 3.07.4 Transition Metal-Catalyzed Cross-Coupling
      • References
    • 3.08 Coupling Reactions Between sp3 and sp2 Carbon Centers
      • Abstract
      • Glossary
      • 3.08.1 Introduction
      • 3.08.2 Copper-Catalyzed or -Mediated Coupling Reactions
      • 3.08.3 Palladium-Catalyzed Coupling Reactions
      • 3.08.4 Nickel-Catalyzed Coupling Reactions
      • 3.08.5 Cobalt-Catalyzed Coupling Reactions
      • 3.08.6 Iron-Catalyzed Coupling Reactions
      • References
    • 3.09 Coupling Reactions Between C(sp2) and C(sp) Carbon Centers
      • Abstract
      • Glossary
      • 3.09.1 General Introduction
      • 3.09.2 Transition Metal-Catalyzed Coupling of Terminal and Masked Alkynes with C(sp2)-Halides
      • 3.09.3 Transition Metal-Catalyzed Coupling of C(sp)-Metal Reagents with C(sp2)-Halides and Pseudohalides
      • 3.09.4 Transition Metal-Catalyzed Coupling of C(sp2)-Metal Reagents with C(sp)-Halides and Pseudohalides
      • 3.09.5 Domino Reactions Involving C(sp2)–C(sp) Coupling as the Key Step
      • References
    • 3.10 Coupling Reactions Between sp Carbon Centers
      • Abstract
      • Glossary
      • 3.10.1 Introduction
      • 3.10.2 Oxidative Coupling Reactions of Terminal Alkynes
      • 3.10.3 Coupling Reactions of Terminal Alkynes and 1-Haloalkynes
      • 3.10.4 Oxidative Homocoupling of Organometallic Alkynides
      • 3.10.5 Coupling of Organometallic Alkynides and 1-Haloalkynes
      • 3.10.6 Decarboxylative Coupling of Propiolic Acids
      • 3.10.7 Elimination Reactions of Haloolefins
      • 3.10.8 Applications
      • References
    • 3.11 Pinacol Coupling Reactions
      • Abstract
      • Glossary
      • 3.11.1 Introduction
      • 3.11.2 Reagents for the Pinacol Coupling Reaction
      • 3.11.3 Pinacol Coupling Reactions in Natural Product Synthesis
      • References
    • 3.12 Acyloin Coupling Reactions
      • Abstract
      • Glossary
      • 3.12.1 Introduction
      • 3.12.2 Traditional Acyloin Coupling Reactions
      • 3.12.3 N-heterocyclic Carbene (NHC) Catalyzed Acyloin Coupling Reactions
      • 3.12.4 Indirect Approaches to Unsymmetrical Acyloins
      • 3.12.5 Summary
      • References
    • 3.13 Oxidative Coupling of Phenols and Phenol Ethers
      • Abstract
      • Glossary
      • 3.13.1 Introduction
      • 3.13.2 Synthesis of Oxygenated Biaryls
      • 3.13.3 Synthesis of Diaryl Ethers
      • 3.13.4 Synthesis of Spirodienones
      • 3.13.5 Oxidative Phenolic Coupling Involving Conjugated Double Bonds
      • 3.13.6 Oxidative Phenolic C–C Coupling Involving Quinonoids
      • 3.13.7 Conclusion
      • References
    • 3.14 The Pinacol Rearrangement
      • Abstract
      • 3.14.1 Introduction
      • 3.14.2 Historic Context
      • 3.14.3 General Reactivity
      • 3.14.4 Aza-Pinacol Rearrangements
      • 3.14.5 Asymmetric Pinacol Rearrangements
      • 3.14.6 Catalytic Enantioselective Pinacol Rearrangements
      • 3.14.7 Natural Product Synthesis
      • References
    • 3.15 Acid-Catalyzed Rearrangement of Epoxides
      • Abstract
      • 3.15.1 Introduction
      • 3.15.2 Brønsted Acid-Catalyzed Rearrangements
      • 3.15.3 Lewis Acids Derived from Main Group Elements
      • 3.15.4 Transition Metal-Based Lewis Acids
      • 3.15.5 Other Metals
      • 3.15.6 Solid Catalysts
      • 3.15.7 Conclusion
      • References
    • 3.16 The Semipinacol Rearrangements
      • Abstract
      • Glossary
      • 3.16.1 Introduction
      • 3.16.2 Rearrangement of 2-Heterosubstituted Alcohols
      • 3.16.3 Rearrangement of Allylic Alcohols
      • 3.16.4 Rearrangement of Propargylic Alcohols
      • 3.16.5 Rearrangement of Epoxides
      • 3.16.6 Rearrangement of α-Hydroxy Ketones and α-Hydroxy Imines
      • 3.16.7 Miscellaneous Type
      • 3.16.8 Summary and Outlook
      • References
    • 3.17 The Favorskii Rearrangement (Extend to Rings)
      • Abstract
      • 3.17.1 Introduction
      • 3.17.2 Mechanism of the Favorskii Rearrangement
      • 3.17.3 The Favorskii Rearrangement in Acyclic Structures
      • 3.17.4 The Favorskii Rearrangement in Alicyclic Structures
      • 3.17.5 Homo- and Quasi-Favorskii Rearrangements
      • 3.17.6 Favorskii-Like Reactions
      • 3.17.7 Oxy-Favorskii Rearrangement
      • 3.17.8 Favorskii Rearrangement in Biosynthetic Transformations
      • References
    • 3.18 The Ramberg–Bäcklund Rearrangement and the Eschenmoser Coupling Reaction
      • Abstract
      • Glossary
      • 3.18.1 The Ramberg–Bäcklund Rearrangement
      • 3.18.2 The Eschenmoser Coupling Reaction (Eschenmoser Sulfide Contraction)
      • References
    • 3.19 The Wolff Rearrangement
      • Abstract
      • Glossary
      • 3.19.1 Introduction
      • 3.19.2 Mechanistic Considerations
      • 3.19.3 Applications
      • 3.19.4 Final Remarks
      • References
    • 3.20 Nitrogen- and Sulfur-Based Stevens and Related Rearrangements
      • Abstract
      • Glossary
      • 3.20.1 Introduction
      • 3.20.2 Procedures for Ylide Generation
      • 3.20.3 [1,2]-Stevens Rearrangements
      • 3.20.4 [2,3]-Stevens Rearrangements
      • 3.20.5 Competition between [1,2] and [2,3] Rearrangements
      • 3.20.6 Enantioselective and Enantiospecific Rearrangements
      • 3.20.7 Stevens Rearrangements of Aminals, Hemiaminals, and Oxathiolanes
      • 3.20.8 Sommelet–Hauser Rearrangements
      • 3.20.9 Lewis-Acid Promoted Stevens Rearrangements of Tertiary Amines
      • 3.20.10 Conclusion
      • References
    • 3.21 The Wittig Rearrangement
      • Abstract
      • Glossary
      • 3.21.1 Overview
      • 3.21.2 1,2-Rearrangements
      • 3.21.3 1,4-Rearrangements
      • 3.21.4 2,3-Rearrangements
      • References
    • 3.22 Carbonylation and Decarbonylation Reactions
      • Abstract
      • Glossary
      • 3.22.1 Introduction
      • 3.22.2 Carbonylation of C–X Bonds
      • 3.22.3 Carbonylation of C–C Unsaturated Bonds
      • 3.22.4 Carbonylation of C–H Bonds
      • 3.22.5 Carbonylative Cyclization
      • 3.22.6 Carbonylative Ring-Expansion
      • 3.22.7 Carbonylation Without CO Gas
      • 3.22.8 Decarbonylation
      • References
    • 3.23 Carbon–Carbon σ-Bond Formation via CH Bond Functionalization
      • Abstract
      • 3.23.1 Introduction
      • 3.23.2 Reactions with CC/CX Multiple Bonds
      • 3.23.3 Reactions with (Pseudo)halides
      • 3.23.4 Reactions with Organometallic Reagents
      • 3.23.5 Reactions with CH Bonds
      • 3.23.6 Miscellaneous CH Functionalization Reactions
      • 3.23.7 Summary and Outlook
      • References
  • Volume 4: Additions to and Substitutions at C–C Π-Bonds
    • Introduction to Volume 4: Additions to and Substitutions at C–C π-Bonds
    • 4.01 Stabilized Nucleophiles with Electron Deficient Alkenes, Alkynes, Allenes
      • Abstract
      • 4.01.1 Introduction
      • 4.01.2 Electron-Deficient Alkenic π-Systems
      • 4.01.3 Electron-Deficient Alkynic π-Systems
      • 4.01.4 Electron-Deficient Allenic π-Systems
      • 4.01.5 Conclusion
      • References
    • 4.02 Nucleophilic Addition-Electrophilic Coupling with a Carbanion Intermediate
      • Abstract
      • Glossary
      • 4.02.1 Introduction
      • 4.02.2 α,β-Unsaturated Aldehydes
      • 4.02.3 The α,β-Unsaturated Ketones
      • 4.02.4 α,β-Unsaturated Esters and Amides
      • 4.02.5 Nitroolefins
      • 4.02.6 Alkynes
      • 4.02.7 Outlook
      • References
    • 4.03 Organocatalytic Asymmetric Nucleophilic Addition to Electron-Deficient Alkenes
      • Abstract
      • Glossary
      • 4.03.1 Introduction
      • 4.03.2 The Michael Reaction
      • 4.03.3 Conjugate Friedel-Crafts Alkylation
      • 4.03.4 Stetter Reaction
      • 4.03.5 Conjugate Addition of Alkenylboranes and Arylboranes
      • 4.03.6 Conjugate Addition of Cyanides
      • 4.03.7 Conjugate Hydrogen Transfer Reaction
      • 4.03.8 Conjugate Addition of Heteronucleophiles
      • 4.03.9 Conclusions and Outlook
      • References
    • 4.04 Metal-Catalyzed Asymmetric Nucleophilic Addition to Electron-Deficient Alkenes
      • Abstract
      • Glossary
      • 4.04.1 Introduction
      • 4.04.2 Copper-Catalyzed ECA
      • 4.04.3 Rh/Ir/Ru Metal-Catalyzed ECA
      • 4.04.4 Pd-Catalyzed Enantioselective Conjugate Addition
      • 4.04.5 Ni-Catalyzed Enantioselective Conjugate Addition
      • 4.04.6 Rare Earth Element-Catalyzed Enantioselective Conjugate Addition
      • 4.04.7 Ti/Zr/Hf Metal-Catalyzed Enantioselective Conjugate Addition
      • 4.04.8 Mg/Zn Metal-Catalyzed Enantioselective Conjugate Addition
      • 4.04.9 Ca/Sr/Ba Metal-Catalyzed Enantioselective Conjugate Addition
      • 4.04.10 Alkali Metal-Catalyzed Enantioselective Conjugate Addition
      • 4.04.11 Al/Ga Metal-Catalyzed Enantioselective Conjugate Addition
      • 4.04.12 Miscellaneous Metal-Catalyzed Enantioselective Conjugate Addition
      • 4.04.13 Conclusion and Outlook
      • References
    • 4.05 Addition of HX Reagents to Alkenes, Alkynes, and Allenes without Transition Metal
      • Abstract
      • Glossary
      • 4.05.1 Introduction
      • 4.05.2 Hydrogen Halides Addition
      • 4.05.3 H–N Addition
      • 4.05.4 H–O Addition
      • 4.05.5 H–SR Addition
      • 4.05.6 H–P Addition
      • 4.05.7 H–SeR Addition
      • 4.05.8 Conclusions
      • References
    • 4.06 Addition of X–Y Reagents to Alkenes, Alkynes, and Allenes
      • Abstract
      • Glossary
      • 4.06.1 Introduction
      • 4.06.2 Ionic Addition Reactions
      • 4.06.3 Radical Addition Reactions
      • 4.06.4 Metal-Catalyzed Addition Reactions
      • References
    • 4.07 Electrophilic Cyclization
      • Abstract
      • Glossary
      • 4.07.1 Introduction
      • 4.07.2 Halocyclization
      • 4.07.3 Sulfenylcyclization, Selenocyclization, and Tellurocyclization
      • 4.07.4 Hg-, Ag-, Au-, and Pt-Catalyzed Electrophilic Cyclization
      • 4.07.5 Conclusion
      • References
    • 4.08 Carbon–Carbon Bond-Forming Reactions Involving Aryl Radicals
      • Abstract
      • Glossary
      • 4.08.1 Introduction
      • 4.08.2 Aryl Radical Addition to Cyanide and Carbanions – Nucleophilic Aromatic Substitutions
      • 4.08.3 Meerwein-Type Reactions: Aryl Radical Addition to Double and Triple Bonds
      • 4.08.4 Substitution of Aromatics and Heteroaromatics through Aryl Radicals
      • 4.08.5 Aryl Radicals in Carbon–Heteroatom Bond Formation
      • 4.08.6 Summary
      • References
    • 4.09 Nucleophilic Coupling with Arynes
      • Abstract
      • Glossary
      • 4.09.1 Introduction
      • 4.09.2 Generation of Arynes
      • 4.09.3 Addition of Nucleophiles to Arynes
      • 4.09.4 Conclusive Remarks
      • References
    • 4.10 Reactions of Nucleophiles with Coordinated Alkynes, Alkenes, and Allenes
      • Abstract
      • 4.10.1 Introduction
      • 4.10.2 Reactions of Alkynes
      • 4.10.3 Reactions of Alkenes
      • 4.10.4 Reactions of Allenes
      • 4.10.5 Summary
      • References
    • 4.11 Nucleophiles with Allyl Metal Complexes
      • Abstract
      • Glossary
      • 4.11.1 Introduction
      • 4.11.2 Carbon Nucleophiles
      • 4.11.3 Nitrogen Nucleophiles
      • 4.11.4 Oxygen Nucleophiles
      • 4.11.5 Sulfur Nucleophiles
      • 4.11.6 Fluorine Nucleophile
      • 4.11.7 Boron Nucleophiles
      • 4.11.8 Other Nucleophiles
      • 4.11.9 Conclusion
      • Acknowledgment
      • References
    • 4.12 Radical Addition Reactions
      • Abstract
      • Glossary
      • 4.12.1 Introduction
      • 4.12.2 Free-Radical Addition to Carbon–Carbon Multiple Bonds
      • 4.12.3 Free-Radical Addition to CarbonHeteroatom Multiple Bonds
      • 4.12.4 Conclusions
      • References
    • 4.13 Radical Cyclizations and Sequential Radical Reactions
      • Abstract
      • Glossary
      • 4.13.1 Introduction
      • 4.13.2 Tin-Free Cyclizations of Carbon-Centered Radicals
      • 4.13.3 Cyclizations Involving Heteroatom-Based Radicals or Radical Acceptors
      • 4.13.4 Cyclizations That Form Unusual-Sized Rings
      • 4.13.5 Enantioselective Cyclizations and Chirality Transfer
      • 4.13.6 Sequential Radical Reactions
      • 4.13.7 Notable Examples of Radical Cyclizations in Total Synthesis
      • 4.13.8 Conclusions
      • References
    • 4.14 Vinyl Substitutions with Organopalladium Intermediates
      • Abstract
      • 4.14.1 Introduction
      • 4.14.2 Catalyst Development
      • 4.14.3 Regioselectivity
      • 4.14.4 Cyclization
      • 4.14.5 Chelation Control
      • 4.14.6 Domino/Cascade/Tandem Processes Involving the Heck Reaction
      • 4.14.7 Oxidative Heck-Type Reactions
      • 4.14.8 Asymmetric Heck Reactions
      • 4.14.9 Combinatorial and Solid-Phase Syntheses
      • 4.14.10 New Reaction Media and Heating Techniques in the Heck Reaction
      • 4.14.11 Natural Products and Active Pharmaceutical Ingredients
      • References
    • 4.15 Carbometalation and Heterometalation Reactions of Alkenes, Alkynes, and Allenes
      • Abstract
      • Glossary
      • 4.15.1 Carbometalation of Alkenes, Alkynes, and Allenes
      • 4.15.2 Heterometalation of Alkenes, Alkynes, and Allenes
      • 4.15.3 Conclusion
      • References
    • 4.16 Bismetallation and Bismetallative Reaction of Alkenes, Alkynes, and Allenes
      • Abstract
      • 4.16.1 Introduction
      • 4.16.2 Bismetallation of Alkenes
      • 4.16.3 Bismetallation of Alkynes
      • 4.16.4 Bismetallation of Allenes
      • 4.16.5 Conclusion
      • References
    • 4.17 Hydroacylation of Alkenes, Alkynes, and Allenes
      • Abstract
      • Glossary
      • 4.17.1 Introduction
      • 4.17.2 Transition Metal-Catalyzed Hydroacylation
      • 4.17.3 Radical Methods
      • 4.17.4 Organocatalytic Methods
      • 4.17.5 Conclusions
      • References
    • 4.18 Hydroformylation and Related Carbonylation Reactions of Alkenes, Alkynes, and Allenes
      • Abstract
      • Glossary
      • 4.18.1 Introduction
      • 4.18.2 Regioselectivity
      • 4.18.3 Isomerizing Hydroformylation
      • 4.18.4 Diastereoselective Hydroformylation
      • 4.18.5 Enantioselective Hydroformylation
      • 4.18.6 Hydroformylation of Alkynes, Allenes, and Epoxides
      • 4.18.7 Related Carbonylation Reaction of Alkenes, Alkynes, and Allenes
      • References
    • 4.19 Methylene and Nonfunctionalized Alkylidene Transfer to Form Cyclopropanes
      • Abstract
      • Glossary
      • 4.19.1 Introduction
      • 4.19.2 Cyclopropanation by Ring Contraction of Pyrazolines
      • 4.19.3 Cyclopropanation with Lithium-derived Carbenes Prepared by α-Elimination
      • 4.19.4 Cyclopropanation with Metal Carbenes Derived from Diazomethane
      • 4.19.5 Cyclopropanation with Carbenes Derived from other Precursors
      • 4.19.6 Cyclopropanation with Carbenoid Reagents
      • 4.19.7 Michael-Induced Ring Closure Reactions
      • 4.19.8 Conclusion
      • References
    • 4.20 Addition of Ketocarbenes to Alkenes, Alkynes, and Aromatic Systems
      • Abstract
      • Glossary
      • 4.20.1 Introduction
      • 4.20.2 Reaction Mechanisms
      • 4.20.3 Ketocarbenoid Precursors
      • 4.20.4 Addition of Ketocarbenoids to Alkenes
      • 4.20.5 Addition of Ketocarbenes to Alkynes
      • 4.20.6 Addition of Ketocarbenoids to Aromatic Systems
      • 4.20.7 Conclusion and Perspective
      • References
    • 4.21 Intramolecular 1,3‐Dipolar Cycloadditions of Alkenes, Alkynes, and Allenes
      • Abstract
      • 4.21.1 Introduction
      • 4.21.2 Azides
      • 4.21.3 Nitrones
      • 4.21.4 Azomethine Ylides
      • 4.21.5 Azomethine Imines
      • 4.21.6 Nitrile Oxides
      • 4.21.7 Nitrile Imines
      • 4.21.8 Carbonyl Ylides
      • 4.21.9 Miscellaneous Dipoles
      • 4.21.10 Conclusions and Outlook
      • References
    • 4.22 Intermolecular 1,3-Dipolar Cycloadditions of Alkenes, Alkynes, and Allenes
      • Abstract
      • Glossary
      • 4.22.1 Introduction
      • 4.22.2 Nitrones
      • 4.22.3 Azomethine Ylide
      • 4.22.4 Azomethine Imines
      • 4.22.5 Carbonyl Ylides
      • 4.22.6 Nitrile Oxides and Nitrile Imines
      • 4.22.7 Diazoalkanes
      • 4.22.8 Azides
      • 4.22.9 Conclusion
      • References
    • 4.23 Stetter Reaction
      • Abstract
      • Glossary
      • 4.23.1 Introduction
      • 4.23.2 Intramolecular Stetter Reactions
      • 4.23.3 Intermolecular Stetter Reactions
      • 4.23.4 Hydroacylation Reactions
      • 4.23.5 Domino and One-Pot Reactions
      • 4.23.6 Other Sources of Acyl Anion Equivalents
      • 4.23.7 Natural Product Synthesis
      • 4.23.8 Summary
      • References
  • Volume 5: Combining C–C Π-Bonds
    • Introduction to Volume 5: Combining C–C π-Bonds
    • 5.01 Ene Reactions with Carbon Enophiles – Metallo-Ene Reactions
      • Abstract
      • Glossary
      • 5.01.1 Introduction
      • 5.01.2 Alder-Ene Additions
      • 5.01.3 Alder-Ene Cycloisomerizations
      • 5.01.4 Metallo-Ene Reactions
      • References
    • 5.02 Thermal Cyclobutane Ring Formation
      • Abstract
      • Glossary
      • 5.02.1 Introduction
      • 5.02.2 Dimerization of Alkenes, Alkynes, and Allenes
      • 5.02.3 Intermolecular [2+2] Cycloadditions
      • 5.02.4 Intramolecular [2+2] Cycloadditions
      • 5.02.5 Summary
      • References
    • 5.03 Formation of Four-Membered Heterocycles
      • Abstract
      • Glossary
      • 5.03.1 Introduction
      • 5.03.2 Reaction of Ketenes, Ketenimines, and Thioketenes with CX bonds
      • 5.03.3 Reaction of Keteniminium Salts with CX Bonds
      • 5.03.4 Reaction of Enols and Enolates with CX Bonds
      • 5.03.5 Reaction of Isocyanates with Alkenes
      • 5.03.6 Reaction of Alkenes, Allenes, and Alkynes with CN Bonds
      • 5.03.7 Reaction of Alkynes with Nitrones
      • 5.03.8 Reaction of Ynolates with CX Bonds
      • 5.03.9 Reaction of Sulfenes with CX bonds
      • 5.03.10 Miscellaneous
      • References
    • 5.04 Photochemical Cycloadditions
      • Abstract
      • Glossary
      • 5.04.1 Introduction
      • 5.04.2 [2+2]-Photocycloadditions
      • 5.04.3 [4+2]-Photocycloaddition
      • 5.04.4 [4+4]-Photocycloadditions
      • 5.04.5 Conclusions and Outlook
      • References
    • 5.05 The Paternò–Büchi Reaction
      • Abstract
      • 5.05.1 Introduction
      • 5.05.2 Intermolecular Reactions
      • 5.05.3 Intramolecular Reactions
      • References
    • 5.06 Di-π-methane, Oxa-di-π-methane, and Aza-di-π-methane Photoisomerization
      • Abstract
      • Glossary
      • 5.06.1 Introduction
      • 5.06.2 Di-π-methane Photoisomerization
      • 5.06.3 Oxa-Di-π-methane Photoisomerization
      • 5.06.4 Aza-Di-π-methane Photoisomerization
      • 5.06.5 Conclusion
      • References
    • 5.07 Metal-Mediated and Metal-Catalyzed [2+2] Cycloadditions
      • Abstract
      • Glossary
      • 5.07.1 Introduction
      • 5.07.2 Intermolecular Metal-Catalyzed [2+2] Cycloaddition of Alkynes and Alkenes
      • 5.07.3 Intramolecular Metal-Catalyzed [2+2] Cycloaddition of Alkynes and Alkenes
      • 5.07.4 Metal-Catalyzed [2+2] Cycloaddition of Alkynes and Allenes
      • 5.07.5 Palladium-Catalyzed [2+2] Cycloaddition of Alkynes and Ketones
      • 5.07.6 Metal-Catalyzed [2+2] Cycloaddition of Alkynes
      • 5.07.7 Metal-Catalyzed [2+2] Cycloaddition Between Two Alkenes
      • 5.07.8 Intramolecular [2+2] Cycloaddition Between Two Alkene Groups
      • 5.07.9 Metal-Catalyzed [2+2] Cycloaddition of Two Allenes
      • 5.07.10 Intramolecular [2+2] Cycloaddition of Bisallenes
      • 5.07.11 Metal-Catalyzed [2+2] Cycloaddition of Allenes and Alkenes
      • 5.07.12 Metal-Catalyzed [2+2] Cycloaddition of Imines with Allenes, Alkenes, Allyl Phosphates, and Halides
      • 5.07.13 Conclusion
      • References
    • 5.08 Thermal and Metal-Induced [3+2] Cycloadditions
      • Abstract
      • Glossary
      • 5.08.1 Introduction
      • 5.08.2 Thermal and Photochemical [3+2] Cycloaddition Reactions
      • 5.08.3 Lewis Acid or Lewis Base-Catalyzed [3+2] Cycloaddition Reactions
      • 5.08.4 Transition Metal Mediated or Catalyzed Reactions
      • References
    • 5.09 Intermolecular Diels–Alder Reactions
      • Abstract
      • Glossary
      • 5.09.1 Introduction
      • 5.09.2 Catalysis Using Chiral Boron Compounds
      • 5.09.3 Catalysis Using Chiral Copper(II) Complexes
      • 5.09.4 Catalysis Using Other Chiral Lewis Acids
      • 5.09.5 Chiral Organocatalysis
      • 5.09.6 Biomimetic Synthesis of Natural Compounds Using Intermolecular Diels–Alder Reactions
      • 5.09.7 Conclusion and Outlook
      • References
    • 5.10 Hetero-Diels–Alder Reactions
      • Abstract
      • Glossary
      • 5.10.1 Introduction
      • 5.10.2 Oxo-Diels–Alder Reactions
      • 5.10.3 Aza-Diels–Alder Reactions
      • 5.10.4 Diels–Alder Reactions of Nitroso Compounds
      • 5.10.5 Other Heterodienes and Heterodienophiles
      • 5.10.6 Biomimetic Synthesis of Natural Compounds Using Hetero-Diels–Alder Reactions
      • 5.10.7 Conclusion and Outlook
      • References
    • 5.11 Intramolecular and Transannular Diels–Alder Reactions
      • Abstract
      • 5.11.1 Introduction
      • 5.11.2 Type 1 IMDA: Effects of the Tether
      • 5.11.3 Acceleration of IMDA Cycloadditions
      • 5.11.4 Catalysis of IMDA Cycloaddition
      • 5.11.5 Type 2 IMDA
      • 5.11.6 IMDAF, IMHDA and Inverse Electron Demand IMDA Cycloaddition
      • 5.11.7 Asymmetric Synthesis via IMDA Cycloaddition
      • 5.11.8 Tandem Reaction Sequences involving IMDA Cycloaddition
      • 5.11.9 Photochemically Generated Reactive Intermediates for IMDA Cycloaddition
      • 5.11.10 Exo Selectivity Regardless: IMDA Reactions of Cyclopropenone Ketals
      • 5.11.11 Recent Applications of IMDA Cycloadditions to Total Synthesis
      • 5.11.12 Biomimetic versus Bio-inspired IMDA Cycloadditions
      • 5.11.13 TADA Cycloadditions
      • 5.11.14 Conclusions and Outlook
      • References
    • 5.12 Retro Diels–Alder Reactions
      • Abstract
      • Glossary
      • 5.12.1 Introduction
      • 5.12.2 Preparation of Substituted Alkenes
      • 5.12.3 Preparation of Polysaturated Hydrocarbons and Arenes
      • 5.12.4 Formation of Small Molecules Containing C=X or X=Y Heteroatom Bonds
      • 5.12.5 Production of Cycloalkane Derivatives
      • 5.12.6 Syntheses of Unsaturated Heterocycles
      • 5.12.7 Application of rDA Reactions in the Chemistry of Oligomers and Polymers
      • 5.12.8 Fullerenes and Graphenes – New Perspectives
      • References
    • 5.13 (4+3) Cycloadditions
      • Abstract
      • Glossary
      • 5.13.1 Introduction
      • 5.13.2 (4+3) Cycloadditions Between Dienes and Allyl Cation Precursors
      • 5.13.3 (4+3) Cycloadditions of Donor–Acceptor Strained Cycles
      • 5.13.4 (4+3) Cycloadditions Involving Metallacyclic Intermediates
      • 5.13.5 (4+3) Cycloadditions via Pd–TMM and Related Species
      • 5.13.6 ‘Formal’ (4+3) Cycloadditions Involving Sequential Processes
      • 5.13.7 Miscellaneous
      • 5.13.8 Conclusion
      • References
    • 5.14 Higher Order Cycloadditions
      • Abstract
      • Glossary
      • 5.14.1 Introduction
      • 5.14.2 [‘m+n'] Cycloadditions
      • 5.14.3 [‘m+n+o’] Cycloadditions
      • 5.14.4 [‘m+n+o+p'] Cycloadditions
      • 5.14.5 Conclusion
      • References
    • 5.15 The Arene–Alkene Photocycloaddition
      • Abstract
      • Glossary
      • 5.15.1 Introduction
      • 5.15.2 Historical Perspective
      • 5.15.3 Mechanistic Considerations
      • 5.15.4 The Meta Photocycloaddition
      • 5.15.5 Intramolecular Meta Photocycloadditions
      • 5.15.6 Examples of Applications of the Ortho Photocycloaddition
      • 5.15.7 Applications of Para Photocycloaddtions
      • 5.15.8 Conclusion
      • References
    • 5.16 Cyclobutene Ring Opening Reactions
      • Abstract
      • Glossary
      • 5.16.1 Introduction
      • 5.16.2 Cyclobutene Ring Opening
      • 5.16.3 Benzocyclobutenes
      • 5.16.4 Cyclobutenones
      • 5.16.5 Cyclobutenediones
      • References
    • 5.17 1,3-Cyclohexadiene Formation Reactions: 6π and Higher-Order Electrocyclizations
      • Abstract
      • Glossary
      • 5.17.1 Introduction
      • 5.17.2 6π Electrocyclizations of 1,3,5-Hexatrienes
      • 5.17.3 Oxa-6π Electrocyclizations
      • 5.17.4 Aza-6π Electrocyclizations
      • 5.17.5 8π-6π Electrocyclization Cascades
      • Acknowledgment
      • References
    • 5.18 The Nazarov Cyclization
      • Abstract
      • Glossary
      • 5.18.1 Introduction
      • 5.18.2 Asymmetric Nazarov Cyclization
      • 5.18.3 The Interrupted Nazarov Reaction
      • 5.18.4 Alternative Activation Strategy
      • References
    • 5.19 Cope, Oxy-Cope, and Anionic Oxy-Cope Rearrangements
      • Abstract
      • Glossary
      • 5.19.1 Introduction
      • 5.19.2 Thermal Cope Rearrangements
      • 5.19.3 Ring Expansion of cis-1,2-Divinylcycloalkanes
      • 5.19.4 Ring Contraction of Medium Rings
      • 5.19.5 CH Activation/Cope Rearrangement
      • 5.19.6 Metal-Catalyzed Cope Rearrangements
      • 5.19.7 Oxy-Cope Rearrangement
      • 5.19.8 AOC
      • 5.19.9 Conclusions
      • References
    • 5.20 Claisen Rearrangements
      • Abstract
      • Glossary
      • 5.20.1 Introduction
      • 5.20.2 Aliphatic Claisen Rearrangement
      • 5.20.3 Other [3,3]-Sigmatropic Rearrangements
      • 5.20.4 Stereoselective Claisen Rearrangement
      • 5.20.5 Conclusions and Outlook
      • References
    • 5.21 Consecutive Sigmatropic Rearrangements
      • Abstract
      • Glossary
      • 5.21.1 Introduction
      • 5.21.2 [3,3]-[3,3] Rearrangement
      • 5.21.3 [3,3]-[i,j] Rearrangement
      • 5.21.4 Conclusion
      • References
    • 5.22 Rearrangements of Vinylcyclopropanes, Divinylcyclopropanes, and Related Systems
      • Abstract
      • 5.22.1 Vinylcyclopropanes
      • 5.22.2 Divinylcyclopropanes
      • 5.22.3 Outlook
      • References
    • 5.23 Anion- and Metal-Promoted Rearrangements of Small-Ring Systems
      • Abstract
      • Glossary
      • 5.23.1 Charge-Accelerated Rearrangements: Background
      • 5.23.2 Charge-Promoted Rearrangements of Cyclopropanes
      • 5.23.3 Charge-Promoted Rearrangements of Cyclobutanes
      • 5.23.4 π-Coordinated Metal-Promoted Rearrangements of Cyclobutanes
      • References
    • 5.24 The Pauson–Khand Reaction
      • Abstract
      • Glossary
      • 5.24.1 Introduction to the Pauson–Khand Reaction
      • 5.24.2 Improvement of the Original Protocol
      • 5.24.3 Catalytic PKR
      • 5.24.4 Asymmetric PKR
      • 5.24.5 Some Special Features
      • 5.24.6 Application to Synthesis
      • 5.24.7 Conclusions
      • References
    • 5.25 Metal Carbene Cycloadditions
      • Abstract
      • Glossary
      • 5.25.1 Introduction
      • 5.25.2 Reactions on the Carbene Ligand: The Metal as Reactivity and Selectivity Auxiliary
      • 5.25.3 Reaction at the Metal Center
      • 5.25.4 Conclusions
      • References
    • 5.26 Cross Metathesis
      • Abstract
      • Glossary
      • 5.26.1 Introduction
      • 5.26.2 CM
      • 5.26.3 Tandem Metathesis
      • 5.26.4 Outlook/Perspectives
      • Acknowledgments
      • References
    • 5.27 Ene–Yne Metathesis
      • Abstract
      • Glossary
      • 5.27.1 Introduction
      • 5.27.2 Mechanism of EYM
      • 5.27.3 Cross-EYM
      • 5.27.4 Ring-Closing Applications
      • 5.27.5 Ring Synthesis
      • 5.27.6 Ring-to-Ring Conversions by EYM
      • 5.27.7 Cascade Enyne Metathesis
      • 5.27.8 Choreographed Movement of Metal Carbenes in Enyne Metathesis Cascades
      • 5.27.9 Double-Directional Synthesis
      • 5.27.10 Conclusion and Outlook
      • References
    • 5.28 Alkyne Metathesis
      • Abstract
      • Glossary
      • 5.28.1 Introduction
      • 5.28.2 Mortreux-Type Catalysts
      • 5.28.3 Schrock Alkylidyne Complexes
      • 5.28.4 Metal–Nitride Complexes as Precatalysts
      • 5.28.5 Reaction Set-up
      • 5.28.6 Synthetic Applications of Alkyne Metathesis
      • 5.28.7 Conclusions and Outlook
      • References
    • 5.29 Ring-Closing Metathesis
      • Abstract
      • Glossary
      • 5.29.1 Introduction
      • 5.29.2 The Mechanism of RCM and a Selection of Commonly Used Catalysts
      • 5.29.3 Five-Membered Ring Systems
      • 5.29.4 Six-Membered Ring Systems
      • 5.29.5 Medium-Sized Ring Systems and Macrocycles
      • 5.29.6 Heterocycles with Less Common Heteroatoms
      • 5.29.7 RCM Reactions Involving Heteroatom-Substituted Double Bonds
      • 5.29.8 Tethered RCM
      • 5.29.9 Relay Ring-Closing Metathesis
      • 5.29.10 Control of Regio- and Stereochemistry Issues Through RCM Reactions
      • 5.29.11 Ring Rearrangement Metathesis (Domino Reactions)
      • 5.29.12 Sequential RCM–Non Metathesis Transformations (Tandem reactions)
      • References
    • 5.30 Noble Metal-Catalyzed Enyne Cycloisomerizations and Related Reactions
      • Abstract
      • Glossary
      • 5.30.1 Introduction
      • 5.30.2 Generalities and Unified Mechanism
      • 5.30.3 Enyne Cycloisomerization Reactions in the Absence of Nucleophiles
      • 5.30.4 Domino Enyne Cycloisomerization–Nucleophile Addition Reactions
      • 5.30.5 Conclusion
      • References
    • 5.31 [2+2+2] Cycloadditions
      • Abstract
      • Glossary
      • 5.31.1 Introduction
      • 5.31.2 Synthesis of Four- and Five-Membered Rings
      • 5.31.3 Synthesis of Six-Membered Carbocyclic Rings
      • 5.31.4 Synthesis of Nitrogen-Containing Six-Membered Heterocycles
      • 5.31.5 Other Six-Membered Heterocycles
      • 5.31.6 Conclusions and Outlook
      • References
    • 5.32 Hydrovinylation Reactions in Organic Synthesis
      • Abstract
      • Glossary
      • 5.32.1 Introduction
      • 5.32.2 Early History of the Hydrovinylation Reaction
      • 5.32.3 Mechanistic Considerations
      • 5.32.4 Asymmetric Hydrovinylation Reactions
      • 5.32.5 Generation of All-Carbon Quaternary Centers
      • 5.32.6 Other Related Ni-Catalyzed Hydroalkenylation Reactions Including Hydrovinylation
      • 5.32.7 Hydrovinylation and Hydroalkenylation of 1,3-Dienes Catalyzed by Rh, Fe, Co, and Ru
      • 5.32.8 Ni-Catalyzed Hydrovinylation of Norbornene and Other Strained Alkenes
      • 5.32.9 Asymmetric Hydrovinylation of 1,3-Dienes
      • 5.32.10 Applications of Asymmetric Hydrovinylation Reactions: Exocyclic Stereocontrol
      • 5.32.11 Conclusions and Future Prospects
      • Acknowledgments
      • References
    • 5.33 Hydroarylation Reactions
      • Abstract
      • 5.33.1 Introduction
      • 5.33.2 Hydroarylation of Alkynes
      • 5.33.3 Hydroarylation of Alkenes
      • 5.33.4 Hydroarylation of Allenes
      • References
    • 5.34 Early Transition Metal Mediated Reductive Coupling Reactions
      • Abstract
      • Glossary
      • 5.34.1 Introduction
      • 5.34.2 Early Transition Metal-Mediated Cyclization of Polyunsaturated Substrates
      • 5.34.3 Early Transition Metal-Mediated Cross-Coupling (Intermolecular C–C Bond Formation)
      • 5.34.4 Conclusion
      • 5.34.5 Perspective
      • References
    • 5.35 Transition-Metal-Catalyzed Cycloaddition of Small Ring Compounds
      • Abstract
      • Glossary
      • 5.35.1 Introduction
      • 5.35.2 Cycloadditions of Methylene- and Alkylidenecyclopropanes
      • 5.35.3 Cycloadditions of Other Cyclopropane Derivatives
      • 5.35.4 Cycloadditions of Cyclopropenes
      • 5.35.5 Cycloadditions of Cyclopropenones
      • 5.35.6 Cycloadditions of Cyclobutane Derivatives
      • 5.35.7 Cycloadditions of Cyclobutenes
      • 5.35.8 Cycloadditions of Cyclobutanones, Cyclobutenones, and Cyclobutenediones
      • 5.35.9 Cycloadditions of Small Heterocyclic Compounds
      • 5.35.10 Conclusions
      • References
    • 5.36 Hydrocyanation in Organic Synthesis
      • Abstract
      • Glossary
      • 5.36.1 Introduction
      • 5.36.2 Addition of HCN to Aldehydes and Ketones
      • 5.36.3 Additions of HCN to Imines
      • 5.36.4 1,4-Additions of HCN to α,β-Unsaturated Carbonyl Compounds
      • 5.36.5 Ring-Opening Reactions of Epoxides and Aziridines
      • 5.36.6 Hydrocyanation of Alkenes
      • 5.36.7 Hydrocyanation of Alkynes
      • 5.36.8 Scope, Limitations, and Future Prospects
      • Acknowledgment
      • References
  • Volume 6: Heteroatom Manipulation
    • Introduction to Volume 6: Heteroatom Manipulation
    • 6.01 Synthesis of Glycosides
      • Abstract
      • Glossary
      • 6.01.1 Introduction
      • 6.01.2 The Glycosylation Mechanism
      • 6.01.3 Classes of Glycosyl Donor
      • 6.01.4 Polymer-Supported Oligosaccharide Synthesis
      • References
    • 6.02 Synthesis of Amines and Ammonium Salts
      • Abstract
      • Glossary
      • 6.02.1 Introduction
      • 6.02.2 Alkylation of Amines and Amine Equivalents
      • 6.02.3 Transition Metal-Catalyzed Allylic Amination
      • Conclusion
      • References
    • 6.03 Synthesis of Nitroso, Nitro, and Related Compounds
      • Abstract
      • Glossary
      • 6.03.1 Nitro Compounds
      • 6.03.2 Nitroso Compounds
      • References
    • 6.04 Synthesis of Sulfides, Sulfoxides, and Sulfones
      • Abstract
      • Glossary
      • 6.04.1 Introduction
      • 6.04.2 Synthesis of Sulfides
      • 6.04.3 Synthesis of Sulfoxides
      • 6.04.4 Synthesis of Sulfones
      • Acknowledgments
      • References
    • 6.05 Synthesis of Phosphonium Ylides
      • Abstract
      • Glossary
      • 6.05.1 Introduction
      • 6.05.2 Alkylidenephosphoranes
      • 6.05.3 Cumulated Phosphoranes: Synthesis and Transformation into Alkylidenephosphoranes
      • References
    • 6.06 Synthesis of Fluorides
      • Abstract
      • Glossary
      • 6.06.1 Synthesis of Alkyl Fluorides
      • 6.06.2 Synthesis of Alkenyl Fluorides
      • 6.06.3 Synthesis of Aryl Fluorides
      • 6.06.4 Positron Emission Tomography with Fluorine-18
      • References
    • 6.07 Ritter-Type Reactions
      • Abstract
      • Glossary
      • 6.07.1 The Ritter Amide Reaction
      • 6.07.2 Extensions of the Original Process
      • 6.07.3 The Ritter Heterocyclic Reaction
      • 6.07.4 Catalytic Developments
      • 6.07.5 Selected Topics
      • References
    • 6.08 Acylation-Type Reactions: Synthesis of Esters via Acyl Transfer
      • Abstract
      • 6.08.1 Introduction
      • 6.08.2 Conclusions and Outlook
      • References
    • 6.09 Synthesis of Esters and Lactones
      • Abstract
      • Glossary
      • 6.09.1 General Information
      • 6.09.2 Formation of Esters and Activated Esters
      • 6.09.3 Alkylative Esterification
      • 6.09.4 Miscellaneous Methods
      • 6.09.5 Synthesis of Lactones
      • 6.09.6 Conclusion
      • 6.09.7 Acknowledgment
      • References
    • 6.10 Synthesis of Thioamides and Thiolactams
      • Abstract
      • 6.10.1 Introduction
      • 6.10.2 Thioacylation of Amines
      • 6.10.3 Thiolysis of Imidocarboxylic Acid Derivatives
      • 6.10.4 Thiolysis of Ynamines
      • 6.10.5 Thiocarbamoylation of Nuclophiles
      • References
    • 6.11 N-Acylation Reactions of Amines
      • Abstract
      • Glossary
      • 6.11.1 Introduction
      • 6.11.2 Overview of Amide Bond-Forming Reactions
      • 6.11.3 Stable N-Acylating Agents
      • 6.11.4 Carbodiimide-Mediated Coupling Reactions
      • 6.11.5 Onium and Pyridinium Peptide Coupling Agents
      • 6.11.6 Amide Bond-Forming Reactions for the Synthesis of Peptides and Proteins
      • 6.11.7 Macrolactamization Approaches
      • 6.11.8 Nitriles, Thiocarboxylic Acids, Thioesters, Trihaloketones, and α-Keto-acids
      • 6.11.9 Redox Amidation Reactions
      • 6.11.10 N-Acylation Reactions for the Kinetic Resolution of (rac)-Amines
      • 6.11.11 Conclusion
      • References
    • 6.12 Inorganic Acid Derivatives
      • Abstract
      • Glossary
      • 6.12.1 Introduction
      • 6.12.2 Phosphorus(V) Reagents
      • 6.12.3 Phosphorus(III) Reagents
      • 6.12.4 Catalytic and Asymmetric Phosphorylation
      • 6.12.5 Oligonucleotides
      • 6.12.6 Phosphate Installation in Natural Product Synthesis
      • 6.12.7 Phosphate-Protecting Groups
      • References
    • 6.13 Use of Carbonyl Derivatives for Heterocyclic Synthesis
      • Abstract
      • Glossary
      • 6.13.1 Introduction
      • 6.13.2 Synthesis of Heterocyclic Compounds
      • 6.13.3 Conclusion
      • References
    • 6.14 Functional Group Transformations via Carbonyl Derivatives
      • Abstract
      • Glossary
      • 6.14.1 Beckmann Rearrangement
      • 6.14.2 Bamford–Stevens Reaction
      • 6.14.3 Shapiro Reaction
      • 6.14.4 Neber Rearrangement
      • References
    • 6.15 Hofmann, Curtius, Schmidt, Lossen, and Related Reactions
      • Glossary
      • 6.15.1 Overview
      • 6.15.2 The Curtius Rearrangement
      • 6.15.3 The Hofmann Reaction
      • 6.15.4 The Lossen Reaction
      • 6.15.5 The Schmidt Reaction
      • References
    • 6.16 Functional Group Transformation via Allyl Rearrangement
      • Abstract
      • 6.16.1 Introduction
      • 6.16.2 Mechanistic Continuum of Reactions Occuring with Allylic Transposition
      • 6.16.3 Heteroatom Transpositions
      • 6.16.4 1,3-Heteroatom-to-Carbon Transpositions
      • 6.16.5 Concluding Remarks
      • References
    • 6.17 Polonovski- and Pummerer-type Reactions and the Nef Reaction
      • Abstract
      • 6.17.1 Introduction
      • 6.17.2 The Polonovski Reaction
      • 6.17.3 The Pummerer Reaction
      • 6.17.4 The Nef Reaction
      • References
    • 6.18 Eliminations to Form Alkenes, Allenes, and Alkynes and Related Reactions
      • Abstract
      • 6.18.1 Introduction
      • 6.18.2 β-Eliminations
      • 6.18.3 α-Eliminations
      • 6.18.4 Stereoselective Methods
      • 6.18.5 Stereospecific Methods
      • 6.18.6 Eliminations to Form Terminal Alkenes
      • 6.18.7 Eliminations to Form Allenes
      • 6.18.8 Eliminations to Form Alkynes
      • References
    • 6.19 Fragmentation Reactions
      • Abstract
      • Glossary
      • 6.19.1 Introduction
      • 6.19.2 Scope and Synthetic Applications
      • 6.19.3 Beckmann Fragmentation
      • 6.19.4 Concluding Remarks/Practical Considerations
      • References
  • Volume 7: Oxidation
    • Introduction to Volume 7: Oxidation
    • 7.01 Oxidation by Dehydrogenation
      • Abstract
      • Glossary
      • 7.01.1 Introduction
      • 7.01.2 Dehydrogenation by Halogenation–Dehydrohalogenation Sequences
      • 7.01.3 Direct Dehydrogenation by Internal Hydrogen Abstraction
      • 7.01.4 Transition-Metal-Mediated C–H Activation Methods
      • 7.01.5 Dehydroaromatization
      • 7.01.6 Summary
      • References
    • 7.02 Oxidation by Metals (Nitrene)
      • Abstract
      • Glossary
      • 7.02.1 Introduction
      • 7.02.2 Nitrene Sources
      • 7.02.3 Reactive Metal Nitrene–Imido Intermediates
      • 7.02.4 Reactions
      • 7.02.5 Conclusion
      • 7.02.6 Acknowledgments
      • References
    • 7.03 Asymmetric C–H Functionalization by Transition Metal-Catalyzed Carbene Transfer Reactions
      • Abstract
      • Glossary
      • 7.03.1 Introduction
      • 7.03.2 Rhodium(II)-Catalyzed Asymmetric Carbene C–H Insertion
      • 7.03.3 Copper(I)-Catalyzed Asymmetric Carbene C–H Insertion
      • 7.03.4 Iridium(III)-Catalyzed Asymmetric Carbene C–H Insertion
      • 7.03.5 Iron(II)-Catalyzed Asymmetric Carbene C–H Insertion
      • 7.03.6 Summary
      • Acknowledgments
      • References
    • 7.04 Oxidation by Microbial Methods
      • Abstract
      • Glossary
      • 7.04.1 Introduction
      • 7.04.2 General Methodological Aspects
      • 7.04.3 Formation of RC Bonds
      • 7.04.4 Formation of RO Bonds
      • 7.04.5 Formation of RX Bonds (X=F, Cl, Br, I)
      • 7.04.6 Formation of RS Bonds
      • 7.04.7 Formation of RN Bonds
      • 7.04.8 Formation of SO Bonds
      • 7.04.9 Emerging Microbial Oxidation Reactions
      • 7.04.10 Summary and Outlook
      • References
    • 7.05 Oxidation Adjacent to CC Bonds
      • Abstract
      • Glossary
      • 7.05.1 Introduction
      • 7.05.2 Conclusion
      • References
    • 7.06 Oxidation Adjacent to CX Bonds by Dehydrogenation
      • Abstract
      • Glossary
      • 7.06.1 Introduction
      • 7.06.2 Summary and Progress of Historical Methods
      • 7.06.3 Hypervalent Iodine Reagents
      • 7.06.4 Transition Metals Reagents and Catalysts
      • 7.06.5 Miscellaneous Methods
      • 7.06.6 Summary and Outlook
      • References
    • 7.07 α-Oxygenation of Carbonyl Compounds
      • Abstract
      • 7.07.1 Introduction
      • 7.07.2 Metal Oxides in α-Oxygenations (M–O)
      • 7.07.3 Molecular Oxygen and Peroxides in α-Oxygenations (O–O)
      • 7.07.4 Oxidants Containing a Nitrogen–Oxygen Bond (N–O)
      • 7.07.5 Hypervalent Iodine in α-Oxygenations (I–O)
      • 7.07.6 Conclusion
      • References
    • 7.08 Oxidation Adjacent to Nitrogen
      • Abstract
      • Glossary
      • 7.08.1 Introduction
      • 7.08.2 Transition-Metal-Catalyzed Oxidation
      • 7.08.3 Metal-Free Oxidation
      • 7.08.4 Electrochemical Oxidation
      • 7.08.5 Visible Light Induced Photoredox Catalytic Oxidation
      • 7.08.6 Conclusion
      • References
    • 7.09 Oxidation of C–H Bond Adjacent to Oxygen of Ethers
      • Abstract
      • Glossary
      • 7.09.1 Introduction
      • 7.09.2 Oxidation Using Metal-Based Oxidants
      • 7.09.3 Oxidation Using Peroxides
      • 7.09.4 Oxidation Using Iodine-Based Oxidants
      • 7.09.5 Oxidation Using Ozone and Molecular Oxygen
      • 7.09.6 Metal–Salt/Heteropolyacid-Catalyzed Dimethyl Ether Oxidation with Molecular Oxygen
      • 7.09.7 Metal-Catalyzed Oxidative Functionalization of C–H Bond Adjacent to Oxygen
      • 7.09.8 Electrochemical Oxidation
      • 7.09.9 Ether Oxidation in Asymmetric Synthesis
      • 7.09.10 Application of Ether Oxidation in Total Synthesis
      • 7.09.11 Conclusion
      • References
    • 7.10 Oxidation Adjacent to Oxygen of Alcohols by Chromium Reagents
      • Abstract
      • Glossary
      • 7.10.1 Introduction
      • 7.10.2 Chromium(VI) in Acid Media
      • 7.10.3 Chromium(VI) with Heterocyclic Bases
      • 7.10.4 Chromium(VI) Under Neutral Conditions
      • 7.10.5 With Chromium(VI) in Catalytic Amounts Under Acidic Conditions
      • 7.10.6 Oxidative Transposition of Tertiary Allylic Alcohols
      • References
    • 7.11 Oxidation Adjacent to Oxygen of Alcohols Catalyzed by Palladium/Dimethyl Sulfoxide
      • Abstract
      • Glossary
      • 7.11.1 Introduction
      • 7.11.2 The Pd(OAc)2/DMSO Catalyst
      • 7.11.3 Other Pd/DMSO Catalysts
      • 7.11.4 Conclusions
      • References
    • 7.12 Directed Aryl C–H Oxidations with Main Group Metals
      • Abstract
      • 7.12.1 Introduction
      • 7.12.2 Directed Metalation–Oxidation of Aryl C–H Bond with Lithium Reagents
      • 7.12.3 Directed Metalation–Oxidation of Aryl C–H Bond with Sodium Reagents
      • 7.12.4 Directed Metalation–Oxidation of Aryl C–H Bond with Magnesium Reagents
      • 7.12.5 Directed Metalation–Oxidation of Aryl C–H Bond with Aluminum Reagents
      • 7.12.6 Directed Metalation–Oxidation of Aryl C–H Bond with Thallium (Tl) Reagents
      • 7.12.7 Summary and Outlook
      • References
    • 7.13 Directed Aryl CH Oxidations with Transition Metals
      • Abstract
      • 7.13.1 Introduction
      • 7.13.2 Phenol Synthesis
      • 7.13.3 Phenol Derivative Syntheses
      • 7.13.4 Alkoxylated Derivative Syntheses
      • 7.13.5 Quinone Synthesis
      • 7.13.6 Aryl Halides
      • 7.13.7 Oxidative CN Coupling
      • 7.13.8 Oxidative CC Coupling
      • References
    • 7.14 Nondirected Aryl C–H Oxidations
      • Abstract
      • Glossary
      • 7.14.1 Oxidations by ROS
      • 7.14.2 Photocatalytic Oxidations of Aromatic C–H Bonds
      • 7.14.3 Enzymatic C–H Hydroxylation
      • 7.14.4 Heterogeneous Catalysts for Arene Oxidation
      • 7.14.5 Oxidation of Aromatic C–H Bonds by Homogeneous Catalysts
      • 7.14.6 Metal Catalyzed C–H Acetoxylation
      • 7.14.7 Oxidative C–C Couplings Via C–H Activation
      • 7.14.8 Formal C–H Oxidation
      • 7.14.9 Summary
      • References
    • 7.15 Synthesis of para- and ortho-Quinones
      • Abstract
      • Glossary
      • 7.15.1 Introduction to Quinones
      • 7.15.2 para-Quinones; a Strategic Summary
      • 7.15.3 ortho-Quinones; a Strategic Summary
      • 7.15.4 Rearrangements and Tautomerizations between o- and p-Quinones
      • References
    • 7.16 Addition Reactions with Formation of Carbon-Heteroatom Bonds: (III) Asymmetric Methods of Dihydroxylation, Aminohydroxylation, and Diamination
      • Abstract
      • 7.16.1 Introduction
      • 7.16.2 Osmium-Catalyzed Dihydroxylation of Alkenes: Vicinal Diol Synthesis
      • 7.16.3 Sharpless Asymmetric Dihydroxylation of Alkenes (AD process)
      • 7.16.4 Glossary: Asymmetric Ligand Acceleration
      • 7.16.5 Glossary: First Cycle Catalysis
      • 7.16.6 Glossary: Second Cycle Catalysis
      • 7.16.7 Ruthenium-Catalyzed Dihydroxylation of Alkenes
      • 7.16.8 Osmium-Catalyzed Aminohydroxylation of Alkenes: Vicinal Amino Alcohol Synthesis
      • 7.16.9 Hypervalent Iodine(III) Reagents
      • 7.16.10 Conclusion
      • References
    • 7.17 Addition Reactions with Formation of Carbon–Oxygen Bonds: (iv) The Wacker Oxidation and Related Reactions
      • Abstract
      • Glossary
      • 7.17.1 Introduction
      • 7.17.2 Formation of Carbonyl Group
      • 7.17.3 Acetalization
      • 7.17.4 Alkoxylation
      • 7.17.5 Acyloxylation
      • 7.17.6 Mechanistic Study
      • 7.17.7 Enantioselective Reactions
      • 7.17.8 Reactions through Pd(IV) Intermediate
      • 7.17.9 Conclusions
      • References
    • 7.18 Addition Reactions with Formation of Carbon–Carbon Bonds: (v) The Oxidative Heck Reaction
      • Abstract
      • Glossary
      • 7.18.1 Introduction
      • 7.18.2 Intermolecular Oxidative Heck Reactions
      • 7.18.3 Intramolecular Oxidative Heck Reactions
      • 7.18.4 Conclusion
      • References
    • 7.19 Addition Reactions with Formation of CarbonNitrogen Bonds
      • Abstract
      • Glossary
      • 7.19.1 Introduction
      • 7.19.2 Alkene Aziridination
      • 7.19.3 Alkene Oxyamination
      • 7.19.4 Alkene Diamination
      • 7.19.5 Alkene Aminohalogenation
      • 7.19.6 Alkene Carboamination
      • References
    • 7.20 Addition Reactions with Formation of Carbon–Sulfur and Carbon Selenium Bonds
      • Abstract
      • Glossary
      • 7.20.1 Introduction
      • 7.20.2 Addition Reactions to CC Bonds with Formation of Carbon–Sulfur Bonds
      • 7.20.3 Addition Reactions to CC Bonds with Formation of Carbon–Selenium Bonds
      • References
    • 7.21 Addition Reactions with Formation of CarbonHalogen Bonds
      • Abstract
      • Glossary
      • 7.21.1 Dihalogenation Reactions
      • 7.21.2 Hydrohalogenation Reactions
      • 7.21.3 Oxyhalogenation
      • 7.21.4 Aminohalogenation
      • 7.21.5 Carbohalogenation Reactions
      • References
    • 7.22 Oxidation of Carbon–Boron Bonds
      • Glossary
      • 7.22.1 Introduction
      • 7.22.2 Replacement of Boron by Oxygen
      • 7.22.3 Replacement of Boron by Nitrogen
      • 7.22.4 Replacement of Boron by Halogen
      • 7.22.5 Replacement of Boron by Sulfur or Selenium
      • 7.22.6 Replacement of Boron by Phosphorus
      • References
    • 7.23 Oxidation of Carbon–Metal Bonds
      • Abstract
      • Glossary
      • 7.23.1 Introduction
      • 7.23.2 Electrophilic Substitution of M–C Bonds without Metal-Centered Redox
      • 7.23.3 Electrophilic Cleavage of M–C Bonds via Two-Electron, Metal-Centered Redox
      • 7.23.4 Electrophilic Cleavage of M–C Bonds via One-Electron, Metal-Centered Redox
      • 7.23.5 Conclusion
      • References
    • 7.24 Oxidation of Carbon–Halogen Bonds
      • Abstract
      • Glossary
      • 7.24.1 Introduction
      • 7.24.2 Kornblum Oxidation and Related Methods
      • 7.24.3 The Kröhnke Oxidation
      • 7.24.4 The Hass–Bender Oxidation
      • 7.24.5 N-Oxides, N-Hydroxypyridones, Nitrones, and Hydroxylamines
      • 7.24.6 Transition-Metal Salts
      • 7.24.7 Metal Nitrates and Nitrites
      • 7.24.8 The Sommelet Oxidation
      • 7.24.9 Hydrogen Peroxide
      • 7.24.10 Halogen and Halogen Compounds
      • 7.24.11 Azides
      • 7.24.12 Photooxidation
      • 7.24.13 Pummerer Rearrangement
      • 7.24.14 Miscellaneous Methods
      • References
    • 7.25 The Beckmann and Related Reactions
      • Abstract
      • Glossary
      • 7.25.1 Introduction
      • 7.25.2 Rearrangement Reactions
      • 7.25.3 Mechanistic and Theoretical Studies
      • 7.25.4 Complex Molecules and Natural Products
      • References
    • 7.26 Glycol Cleavage Reactions
      • Abstract
      • Glossary
      • 7.26.1 Introduction
      • 7.26.2 Metallic Reagents
      • 7.26.3 Nonmetallic Reagents
      • 7.26.4 Applications in Organic Syntheses
      • References
    • 7.27 The Hunsdiecker and Related Reactions
      • Abstract
      • Glossary
      • 7.27.1 Introduction
      • 7.27.2 Generation of Carboxyl Radicals
      • 7.27.3 Reductive Decarboxylation
      • 7.27.4 Oxidative Decarboxylation
      • 7.27.5 Decarboxylative Halogenation
      • 7.27.6 Decarboxylative Chalcogenation
      • 7.27.7 Decarboxylative C–O Bond Formation
      • 7.27.8 Decarboxylative C–N and C–P Bond Formation
      • 7.27.9 Decarboxylative C–C Bond Formation
      • References
    • 7.28 Oxidation of Sulfur, Selenium, and Tellurium
      • Abstract
      • Glossary
      • 7.28.1 Introduction
      • 7.28.2 Oxidation of Organic Sulfur Compounds
      • 7.28.3 Oxidation of Organic Selenium Compounds
      • 7.28.4 Oxidation of Organic Tellurium Compounds291a,b,339b291a,b,339b
      • 7.28.5 Synthesis of Enantioenriched Sulfoxides by Chemical and Biological Oxidation
      • 7.28.6 Synthesis of Enantioenriched Selenoxides and Telluroxides by Chemical Oxidation
      • References
    • 7.29 Oxidative Functionalization with Hypervalent Halides
      • Abstract
      • Glossary
      • 7.29.1 Introduction
      • 7.29.2 Reagents
      • 7.29.3 Oxidations
      • 7.29.4 Cyclization Reactions
      • 7.29.5 α-Functionalization of Carbonyl Compounds
      • 7.29.6 Oxidative Coupling Reactions
      • 7.29.7 Rearrangements
      • 7.29.8 Catalytic Reactions
      • 7.29.9 Stereoselective Reactions
      • 7.29.10 Hypervalent Bromine Reagents
      • References
  • Volume 8: Reduction
    • Introduction to Volume 8: Reduction
    • 8.01 Reduction of C=O to CHOH by Metal Hydrides
      • Abstract
      • Glossary
      • 8.01.1 Introduction
      • 8.01.2 Selectivity
      • 8.01.3 Reductions with Borohydrides
      • 8.01.4 Reductions with Aluminum Hydrides
      • 8.01.5 Reductions of Aldehydes and Ketones with Boranes
      • 8.01.6 Chemoselective Reductions of Aldehydes versus Ketones
      • 8.01.7 Direct Reductions of Aldehydes and Ketones Resulting from Oxidative Processes
      • 8.01.8 Inversion of the Stereochemistry of Secondary Hydroxy Groups
      • 8.01.9 Reduction of β-Hydroxy Ketones
      • 8.01.10 Enantioselective Reductions of Ketones
      • 8.01.11 Reduction with Silanes
      • 8.01.12 Conclusion
      • References
    • 8.02 Reduction of CN to CH–NH by Metal Hydrides
      • Abstract
      • Glossary
      • Note
      • 8.02.1 Introduction
      • 8.02.2 Comparisons to Carbonyl Reductions
      • 8.02.3 Reduction of Imines and Iminium Ions with Metal Hydrides
      • 8.02.4 Reductions of N-Heteroatom-Substituted Imines
      • 8.02.5 Conclusion
      • References
    • 8.03 Reduction of CN to CHNH by Hydride Delivery from C
      • Abstract
      • Glossary
      • 8.03.1 Introduction
      • 8.03.2 Imine Reduction by Transfer Hydrogenation from Formic Acid and 2-Propanol
      • 8.03.3 Imine Reduction by Transfer Hydrogenation with N-Heterocycles as Hydride Donors
      • 8.03.4 Asymmetric Imine Reduction by Hydride Delivery from Silanes
      • 8.03.5 Amine Synthesis from Reductive Amination of CO
      • References
    • 8.04 Reduction of CO to CHOH by Metal-Catalyzed Hydrogenation and Transfer Hydrogenation
      • Abstract
      • 8.04.1 Introduction
      • 8.04.2 Hydrogenation of Carbonyl Groups with H2
      • 8.04.3 Transfer Hydrogenation of Carbonyl Groups
      • 8.04.4 Concluding Remarks
      • References
    • 8.05 Reduction of CN to CHNH by Metal-Catalyzed Hydrogenation and Transfer Hydrogenation
      • Abstract
      • Glossary
      • 8.05.1 Introduction
      • 8.05.2 Ligands and Catalysts
      • 8.05.3 Substrates and Transformations
      • 8.05.4 Mechanism and Stereochemistry
      • 8.05.5 Synthetic and Industrial Applications
      • 8.05.6 Alternative Reduction Systems
      • References
    • 8.06 Reduction of CX to CHXH by Dissolving Metals and Related Methods
      • Abstract
      • Glossary
      • 8.06.1 Introduction
      • 8.06.2 Reduction by Dissolving Metals
      • 8.06.3 Reductions by Metal Ions
      • 8.06.4 Electrochemical Reductions
      • 8.06.5 Reductions by Photoinduced Electron Transfer
      • References
    • 8.07 Reduction of CO to CHOH Using Enzymes and Microorganisms
      • Abstract
      • Glossary
      • 8.07.1 Using Ketoreductases for the Synthesis of Chiral Alcohols
      • 8.07.2 KRED Mechanism
      • 8.07.3 Whole-Cell Organisms for Ketone Reductions
      • 8.07.4 Isolated Enzymes for Ketone Reductions
      • 8.07.5 Cofactor Recycling
      • 8.07.6 Substrate Range of KREDs
      • 8.07.7 Summary
      • References
    • 8.08 A Reduction of CN to CH–NH Using Enzymes and Microorganisms
      • Abstract
      • Glossary
      • 8.08.1 Introduction
      • 8.08.2 AaDHs
      • 8.08.3 Amine Dehydrogenases
      • 8.08.4 Imine Reductases
      • 8.08.5 Nitrile Reductases
      • 8.08.6 Transaminases
      • 8.08.7 Conclusions and Future Prospects
      • References
    • 8.09 Reduction of O,O-, N,O-, and S,O-Acetals to Ethers
      • Abstract
      • Glossary
      • 8.09.1 Introduction
      • 8.09.2 Advances in Mechanistic Understanding
      • 8.09.3 Selective Reductions
      • 8.09.4 Conclusion
      • References
    • 8.10 Reduction of Carboxylic Acids and their Derivatives to Alcohols, Ethers, and Amines
      • Abstract
      • 8.10.1 Introduction
      • 8.10.2 Reduction of Carboxylic Acids to Alcohols
      • 8.10.3 Reduction of Acyl Halides
      • 8.10.4 Reduction of Anhydrides
      • 8.10.5 Reduction of Carboxylic Esters
      • 8.10.6 Reduction of Lactones
      • 8.10.7 Reduction of Amides and Lactams
      • 8.10.8 Reduction of Nitriles
      • 8.10.9 Reduction of Imides to Lactams
      • References
    • 8.11 Reduction of Carboxylic Acids and their Derivatives to Aldehydes
      • Abstract
      • 8.11.1 Introduction
      • 8.11.2 Carboxylic Acids
      • 8.11.3 Acyl Chlorides
      • 8.11.4 Carboxylic Acid Esters
      • 8.11.5 Lactones
      • 8.11.6 Carboxylic Acid Amides
      • 8.11.7 Lactams (Including Cyclic Imides)
      • 8.11.8 Nitriles
      • 8.11.9 Other Derivatives
      • References
    • 8.12 Reduction of CX to CH2
      • Abstract
      • 8.12.1 Reduction of CX to CH2
      • References
    • 8.13 Recent Developments in the Reduction of Nitro and Nitroso Compounds
      • Abstract
      • 8.13.1 Introduction
      • References
    • 8.14 Reduction of NN, N–N, N–O, and O–O Bonds
      • Glossary
      • 8.14.1 Introduction
      • 8.14.2 Reduction of NN Bonds
      • 8.14.3 Reduction of N–N Single Bonds
      • 8.14.4 Reduction of N–O Bonds
      • 8.14.5 Reduction of O–O Bonds
      • References
    • 8.15 Reduction of SO and SO2 to S, S–X to S–H, and PO to P
      • Abstract
      • Glossary
      • 8.15.1 Introduction
      • 8.15.2 Reduction of SO and Related Functional Groups
      • 8.15.3 Reduction of S–X to S–H
      • 8.15.4 Reduction of PO Compounds
      • 8.15.5 Conclusion
      • References
    • 8.16 Heterogeneous Hydrogenation of CC and CC Bonds
      • Abstract
      • Glossary
      • 8.16.1 Introduction
      • 8.16.2 Hydrogenation of Alkenes
      • 8.16.3 Hydrogenation of Alkynes
      • 8.16.4 Useful Notes
      • References
    • 8.17 Homogeneous Catalytic Hydrogenation of CåC and CåC
      • Abstract
      • 8.17.1 Hydrogenation of Nonconjugated CåC
      • 8.17.2 Hydrogenation of Conjugated Alkenes
      • 8.17.3 Hydrogenation of Aromatic and Heteroaromatic Rings
      • 8.17.4 Hydrogenation of C≡C Bonds
      • 8.17.5 Homogeneous Asymmetric Hydrogenation of CåC Bonds Using Chiral Catalysts
      • 8.17.6 Summary
      • References
    • 8.18 Reduction of CåC and CåC by Noncatalytic Chemical Methods
      • Abstract
      • 8.18.1 Introduction
      • 8.18.2 Diimide
      • 8.18.3 Dissolving Metal Reductions
      • 8.18.4 Low-Valent Metal Reductions
      • 8.18.5 Ionic Hydrogenation
      • 8.18.6 Modified Hydride Reagents
      • References
    • 8.19 Partial Reduction of Benzenoid Aromatic Rings by Dissolving Metals and by Other Methods
      • Abstract
      • Glossary
      • 8.19.1 Introduction
      • 8.19.2 The Birch Reduction
      • 8.19.3 Survey of Birch Reductions
      • 8.19.4 Further Methods for the Reduction of Aromatic Rings
      • References
    • 8.20 Partial Reduction of Enones, Styrenes, and Related Systems
      • Abstract
      • Glossary
      • 8.20.1 Introduction
      • 8.20.2 Transition Metal-Catalyzed Conjugate Reduction of α,β-Unsaturated Carbonyl Compounds Using Metal Hydrides
      • 8.20.3 Transfer Hydrogenation Using Organic Hydride Donors
      • 8.20.4 Hydrogenation by Heterogenous Catalyst
      • 8.20.5 Electron Transfer Reductions
      • 8.20.6 Reductive Aldol Reaction via 1,4-Reduction of Enones
      • 8.20.7 Biochemical Reductions
      • 8.20.8 1,2-Reduction of Enones
      • 8.20.9 Partial Reduction of Styrene Derivatives
      • References
    • 8.21 Partial and Complete Reduction of Pyridine and their Benzo Analogs
      • Abstract
      • Glossary
      • 8.21.1 Introduction
      • 8.21.2 Stoichiometric Chemical Reductions
      • 8.21.3 Transition Metal-Catalyzed Reductions
      • 8.21.4 Organocatalyzed Reductions
      • References
    • 8.22 Partial and Complete Reduction of Pyrroles, Furans, Thiophenes, and their Benzo Analogs, Heterocycles Containing More Than One Heteroatom
      • Abstract
      • Glossary
      • 8.22.1 Reduction of Furans
      • 8.22.2 Reduction of Benzofurans
      • 8.22.3 Reduction of Pyrroles
      • 8.22.4 Reduction of Indoles
      • 8.22.5 Reduction of Thiophenes and Benzothiophenes
      • 8.22.6 Reduction of Heterocyclic Rings Containing Two or More Heteroatoms
      • References
    • 8.23 Hydrozirconation of Alkenes and Alkynes
      • Abstract
      • Glossary
      • 8.23.1 General Introduction
      • 8.23.2 Hydrozirconation Reagents: Schwartz Reagent Related and Others
      • 8.23.3 Hydrozirconation of Alkene
      • 8.23.4 Hydrozirconation of Alkyne
      • 8.23.5 Hydrozirconation of Allene Derivatives
      • 8.23.6 Summary
      • References
    • 8.24 Hydrometallation of CC and CC Bonds. Group 3
      • Glossary
      • 8.24.1 Hydroboration of CC and CC Bonds
      • 8.24.2 Hydroalumination of CC and CC Bonds
      • 8.24.3 Hydrogallation of CC and CC Bonds
      • 8.24.4 Hydroindation of CC and CC Bonds
      • References
    • 8.25 Hydrometallation Group 4 (Si, Sn, Ge, and Pb)
      • Abstract
      • Glossary
      • 8.25.1 Introduction
      • 8.25.2 Hydrosilylation
      • 8.25.3 Hydrostannylation
      • 8.25.4 Hydrogermylation
      • 8.25.5 Hydroplumbation
      • References
    • 8.26 Reduction of Saturated Alkyl Halides to Alkanes
      • Abstract
      • Glossary
      • 8.26.1 Introduction and Scope of the Review
      • 8.26.2 General Observations
      • 8.26.3 Catalytic Hydrogenolysis with Metals
      • 8.26.4 Dissolving Metals
      • 8.26.5 Nucleophilic Reactions with Metal Hydrides
      • 8.26.6 Nucleophilic Reductions with Complex Metal Hydrides
      • 8.26.7 Samarium Diiodide
      • 8.26.8 Photoredox Reactions
      • References
    • 8.27 Reduction of Saturated Alcohols and Amines to Alkanes
      • Abstract
      • Glossary
      • 8.27.1 Introduction
      • 8.27.2 Reductive Deoxygenation of Alcohols and Their Derivatives
      • 8.27.3 Reductive Deamination of Amines and Their Derivatives
      • 8.27.4 Conclusion
      • References
    • 8.28 Reduction of SulfurCarbon Bonds and of Other Heteroatoms Bonded to Tetrahedral Carbon
      • Abstract
      • 8.28.1 Reduction of SulfurCarbon Bonds
      • 8.28.2 Reduction of SeleniumCarbon Bonds
      • 8.28.3 Reduction of TinCarbon Bonds
      • 8.28.4 Reduction of MercuryCarbon Bonds
      • 8.28.5 Reduction of PhosphorusCarbon Bonds
      • References
    • 8.29 Reduction of Epoxides
      • Abstract
      • Glossary
      • 8.29.1 Introduction
      • 8.29.2 Reduction of Epoxides to Alcohols
      • 8.29.3 Deoxygenation of Epoxides
      • References
    • 8.30 Reduction of Alkenyl Halides to Alkenes, and of Aryl Halides and Related Compounds to Arenes
      • Abstract
      • Glossary
      • 8.30.1 Reduction of the sp2 Carbon–Halogen Bonds
      • 8.30.2 Reduction of sp2 Carbon–Oxygen Bonds
      • 8.30.3 Reduction of sp2 Carbon–Sulfur Bonds
      • 8.30.4 Reduction of sp2 Carbon–Nitrogen Bonds
      • References
    • 8.31 Reduction of Ketones to Alkenes
      • Abstract
      • Glossary
      • 8.31.1 Introduction
      • 8.31.2 Direct Methods
      • 8.31.3 Reduction of Vinyl-Heteroatom Derivatives
      • 8.31.4 Reductive Elimination of α-Substituted Ketones
      • 8.31.5 Reductive Elimination of Hydrazone Derivatives
      • 8.31.6 Reduction and Dehydration
      • References
    • 8.32 Hydrogenolysis of Allyl and Benzyl Halides and Related Compounds
      • Abstract
      • Glossary
      • 8.32.1 Introduction and Scope of the Review
      • References
  • Volume 9: Enabling Technologies for Organic Synthesis
    • Introduction to Volume 9: Enabling Technologies for Organic Synthesis
    • 9.01 Enabling Technologies in High Throughput Chemistry
      • Abstract
      • Glossary
      • 9.01.1 Introduction – Emergence of Parallel Synthesis with Brief Technical Timeline
      • 9.01.2 Comparison of the Combinatorial and Parallel Approach
      • 9.01.3 Solid and Liquid-Phase Parallel Synthesis
      • 9.01.4 Solution-Phase Technologies in Parallel Synthesis
      • 9.01.5 High Throughput Purification and Automated Sample Handling Methods and Protocol
      • 9.01.6 Parallel Synthesis in Flow
      • 9.01.7 Summary
      • References
    • 9.02 High-Throughput Analysis for High-Throughput Experimentation in Organic Chemistry
      • Abstract
      • 9.02.1 Introduction
      • 9.02.2 A Variety of Approaches for Fast Analysis
      • 9.02.3 Chromatography
      • 9.02.4 Parallel Chromatography Approaches for HTA
      • 9.02.5 Parallel Electrophoresis Approaches for HTA
      • 9.02.6 Nonchromatographic Approaches to HTA: Mass Spectrometry
      • 9.02.7 Sensor Technologies for HTA
      • 9.02.8 Conclusion and Future Prospects
      • References
    • 9.03 Organic Synthesis in Small Scale Continuous Flow: Flow Chemistry
      • Abstract
      • Glossary
      • 9.03.1 Introduction
      • 9.03.2 Microreaction Technology
      • 9.03.3 Fundamentals of Flow Chemistry
      • 9.03.4 Flow Chemistry
      • 9.03.5 Photochemical Systems
      • 9.03.6 Multistep Synthesis
      • 9.03.7 Automation of Microfluidics
      • 9.03.8 Scaling Up
      • 9.03.9 Conclusions
      • Acknowledgments
      • References
    • 9.04 Microcapillary Catalysis
      • Abstract
      • Glossary
      • 9.04.1 Introduction
      • 9.04.2 Experimental Realization of On-Column Reaction Chromatography
      • 9.04.3 Determination of Kinetic Data
      • 9.04.4 Catalytic Reactions Investigated by On-Column Reaction Chromatography
      • 9.04.5 Outlook
      • References
    • 9.05 Technology-Enabled Synthesis of Carbohydrates
      • Abstract
      • Glossary
      • 9.05.1 Introduction
      • 9.05.2 Principles of Automated Oligosaccharide Synthesis
      • 9.05.3 Automation Platforms
      • 9.05.4 Solid Support
      • 9.05.5 Linker
      • 9.05.6 Building Blocks
      • 9.05.7 Automated Synthesis of Oligosaccharides
      • 9.05.8 Conclusion
      • References
    • 9.06 The Use of Preparative Chiral Chromatography for Accessing Enantiopurity in Pharmaceutical Discovery and Development
      • Abstract
      • Glossary
      • 9.06.1 Introduction
      • 9.06.2 Fundamentals of Stereochemistry
      • 9.06.3 Fundamentals of Chromatography and the Chromatographic Separation of Enantiomers
      • 9.06.4 Preparative Chromatography Instrumentation, Supercritical Fluid Chromatography, and Green Chromatography
      • 9.06.5 Chromatographic Productivity
      • 9.06.6 Method Development
      • 9.06.7 The Role of Preparative Chromatography in Organic Synthesis
      • 9.06.8 Examples and Case Histories
      • 9.06.9 Conclusion
      • References
    • 9.07 High-Throughput Purification in Support of Pharmaceutical Discovery
      • Abstract
      • Glossary
      • 9.07.1 Introduction
      • 9.07.2 High-Throughput Chromatography
      • 9.07.3 Parallel Channel, MUX Mass-Directed Purification
      • 9.07.4 Chromatographic Hardware/Software Optimization
      • 9.07.5 Passive and Active Splitting
      • 9.07.6 Boolean Logic Fraction Triggers
      • 9.07.7 Sample Loading Techniques for HTP
      • 9.07.8 High pH Chromatography
      • 9.07.9 Focused Gradients
      • 9.07.10 Autopurify – Automated Analytical to Preparative
      • 9.07.11 Normal Phase Mass-Directed HPLC
      • 9.07.12 General SFC Characteristics
      • 9.07.13 Use of Cyclones for Handling Expansion of Supercritical CO2
      • 9.07.14 UV-Based SFC for HTP
      • 9.07.15 Mass-Directed SFC for HTP
      • 9.07.16 HTP Workflows
      • 9.07.17 Prepurification Workflow
      • 9.07.18 Analytical Screening
      • 9.07.19 Visualization/Interpretation of Screening Data, Choice of Purification Conditions
      • 9.07.20 Postpurification Workflow
      • 9.07.21 Processing of Fractions from Purification
      • 9.07.22 Current Needs and Future Outlook
      • 9.07.23 Conclusion
      • References
    • 9.08 Use of Industrial Scale Chromatography in Pharmaceutical Manufacturing
      • Abstract
      • Glossary
      • 9.08.1 Introduction
      • 9.08.2 Generalities on Prep
      • 9.08.3 Process Development
      • 9.08.4 Equipment and Technique for Large-Scale Manufacturing
      • 9.08.5 Implementation for Commercial-Scale Manufacturing
      • 9.08.6 Conclusion
      • References
    • 9.09 High-Throughput Screening to Enable Salt and Polymorph Screening, Chemical Purification, and Chiral Resolution
      • Abstract
      • Glossary
      • 9.09.1 Introduction
      • 9.09.2 High-Throughput Experimentation
      • 9.09.3 Salt and Polymorph Screening
      • 9.09.4 Purification of Drug Molecules
      • 9.09.5 Enantiomeric Purification
      • 9.09.6 Perspectives
      • References
    • 9.10 Organic Synthesis Using Microwave Heating
      • Abstract
      • Glossary
      • 9.10.1 Introduction
      • 9.10.2 Physical Chemistry Concepts
      • 9.10.3 Equipment
      • 9.10.4 Safety
      • 9.10.5 Application of Microwave Heating as a Tool in Organic Chemistry
      • 9.10.6 Use of Microwave Heating in Combinatorial Chemistry
      • 9.10.7 Microwave-Assisted, Continuous-Flow Organic Synthesis
      • 9.10.8 Additional Applications of Microwave Heating in Organic Synthesis
      • 9.10.9 In situ Monitoring of Reactions Performed using Microwave Heating
      • 9.10.10 Scale-Up of Reactions using Microwave Heating
      • 9.10.11 Conclusion
      • Acknowledgment
      • References
    • 9.11 Useful Chemical Activation Alternatives in Solvent-Free Organic Reactions
      • Abstract
      • Glossary
      • 9.11.1 Introduction
      • 9.11.2 Mechanochemistry
      • 9.11.3 Microwave Irradiation Under Solvent-Free Conditions
      • 9.11.4 Miscellaneous Solvent-Free Strategies
      • 9.11.5 Solvent-Free Philosophy in the Chemical Industry
      • Acknowledgments
      • References
    • 9.12 Fluorous Linker-Enabled Organic Synthesis
      • Abstract
      • Glossary
      • 9.12.1 Introduction
      • 9.12.2 Fluorous Linkers and Separation Techniques
      • 9.12.3 Fluorous Parallel Synthesis
      • 9.12.4 Fluorous DOS
      • 9.12.5 Fluorous Mixture Synthesis
      • 9.12.6 Conclusion
      • References
    • 9.13 Organic Photochemistry
      • Abstract
      • Glossary
      • 9.13.1 Introduction
      • 9.13.2 Fundamentals
      • 9.13.3 Experimental Aspects
      • 9.13.4 Photochemistry of Alkenes
      • 9.13.5 Photochemistry of Carbonyl Compounds
      • 9.13.6 Singlet Oxygen
      • 9.13.7 Photolabile Protecting Groups
      • 9.13.8 Photoredox Catalysis
      • 9.13.9 Miscellaneous Reactions
      • 9.13.10 Conclusion
      • References
    • 9.14 Preparative Electrochemistry for Organic Synthesis
      • Abstract
      • Glossary
      • 9.14.1 Introduction
      • 9.14.2 Fundamental Electrochemistry
      • 9.14.3 Laboratory Research
      • 9.14.4 Electrochemical Technology
      • 9.14.5 Pilot Plant Trials
      • 9.14.6 Industrial Production
      • 9.14.7 Summary
      • References
    • 9.15 Synthetic Biology Approaches for Organic Synthesis
      • Abstract
      • Glossary
      • 9.15.1 Introduction
      • 9.15.2 Enabling Technologies
      • 9.15.3 Enzyme Engineering
      • 9.15.4 Metabolic Engineering
      • 9.15.5 Beyond Nature: Design and Evolution of Artificial Function/Catalysis
      • Acknowledgments
      • References
    • 9.16 Enzyme Evolution as a Tool for Creating Improved Catalysts for Large-Scale Organic Synthesis
      • Abstract
      • Glossary
      • 9.16.1 Introduction into Biocatalysis
      • 9.16.2 The Need for Enzyme Evolution
      • 9.16.3 The Principles that Guide Enzyme Evolution
      • 9.16.4 Tools Required for Effective Enzyme Evolution
      • 9.16.5 Overview of Recently Developed Large-Scale Biocatalysis Processes that Involve Evolved Enzymes
      • 9.16.6 Anticipated Future Developments
      • References
    • 9.17 Chemistry of Antibody–Small Molecule Drug Conjugates
      • Abstract
      • Glossary
      • 9.17.1 Introduction – Brief Antibody–Drug Conjugates (ADCs) Backgrounder and Scope
      • 9.17.2 Antibody Chemistry
      • 9.17.3 Conjugation Chemistry
      • 9.17.4 Linker Chemistry
      • 9.17.5 Loading Chemistry
      • 9.17.6 Small Molecule Chemistry
      • 9.17.7 Conclusions and Future for Organic Synthesis in ADCs
      • References
    • 9.18 Post-Synthetic Chemical Functionalization of Oligonucleotides
      • Abstract
      • Glossary
      • 9.18.1 Introduction
      • 9.18.2 Strategies for Oligonucleotide Postsynthetic Modification
      • 9.18.3 Conclusion and Future Perspective
      • References
  • Index
  • Author Index

Details

No. of pages:
9806
Language:
English
Copyright:
© Elsevier 2014
Published:
Imprint:
Elsevier
eBook ISBN:
9780080977430
Hardcover ISBN:
9780080977423

About the Editor-in-Chief

Paul Knochel

Affiliations and Expertise

Ludwig-Maximilians-Universitat, Munich, Germany

Gary A Molander

Affiliations and Expertise

University of Pennsylvania, USA

Awards

2015 PROSE Awards - Winner, Multivolume - Science: Association of American Publishers, Comprehensive Organic Synthesis

PROSE Award 2015, Reference Work, Multivolume /Science, American Association of Publishers

Reviews

"...the collection's greatest strength: the array of topics presented by subject experts...an important tool for academic and professional chemistry collections...Summing Up: Highly recommended."  --Choice

Praise for the 1st Edition:
"'I gazed and gazed but little thought, what walth to me the show had brought'. What daffodils did to Wordsworth, this treatise did to me.... This vast undertaking has been supremely well organised, employing internationally renowned synthetic chemists as editors.... This series presents a refreshing overview of modern synthetic methodology and provokes many tantalising questions and thoughts.... Anyone who synthesises organic compounds must have access to the work" --Choice