Elsevier introduces authoritative scientific Datasets to fuel innovation and business-critical decisions in life sciences, chemicals and other research-intensive industries
New York | 8 de noviembre de 2023
Elsevier’s Datasets help accelerate digital transformation at scale in a variety of applications, including generative AI and predictive modeling
Elsevier, a global leader in scientific information and data analytics, has announced a new offering of enriched and authoritative scientific Datasets to power data applications that solve R&D challenges. Elsevier’s Datasets enable researchers, data scientists and practice leaders to answer R&D questions with greater speed and precision across many industries, including life sciences, energy, chemicals and materials, and technology. Use cases span a variety of data science and analytical projects including identifying disease targets using natural language processing, predicting molecule efficacy and toxicity using neural networks, predictive modeling, Key Opinion Leader (KOL) analysis and more.
“R&D-intensive businesses are excited by the possibilities of generative AI, predictive modeling and other areas at the vanguard of data science,” commented Gino Ussi, President of Corporate Markets, Elsevier. “However, to deliver high-quality analytics and well-trained AI models, data scientists must still devote much of their time to sourcing quality data. This is laborious due to the volume and range of research literature and comes with risk if the data is not from a trusted, validated source. Elsevier’s Datasets address this challenge, drawing on our expertise in curating peer-reviewed science for more than 140 years and partnering with the research community.”
Pharma, chemicals, energy, applied materials and technology companies can extract scientific insights by integrating data from Elsevier into private, secure computational ecosystems, including custom applications and third-party tools. Application-ready Datasets for chemistry, biology and 22 other disciplines come from a variety of sources, including:
19 million full-text articles from peer-reviewed journals
17 million author profiles
1.8 billion cited references
333 million chemical substances and reactions
86 million bioactivities and biomedical records
35 million chemical patents
Elsevier’s Datasets accelerate discovery and innovation in multiple domains. Leaders in pharmaceuticals, chemicals, technology and other industries are licensing Elsevier data for a variety of use cases. For example, in drug discovery, Datasets are used for target selection and discovery, confirming or identifying lead candidates, and in performing protein-ligand binding QSAR modeling. Pharmaceutical companies can also benefit from applying Datasets to pharmacovigilance, clinical trial design and to inform market access strategy. In materials science and materials informatics, Datasets support selecting the right material for a given application or product design based on property prediction and analysis of relevant datasets. Spanning all disciplines, Datasets enable KOL identification and rising star selection; predictive modeling (e.g., material property predictions or drug-drug interactions); training sets; knowledge graph creation; enterprise, federated and/or semantic search; business intelligence dashboards; and algorithm and neural network training.
Datasets are delivered flexibly via APIs or flat files. Elsevier has a team of domain and data science experts who can support customers’ data projects, and ontology management, text analytics and semantic search tools to help find, manage and share data.
“Elsevier’s Datasets provide data from the world’s largest source of scientific information to embed within R&D and business workflows. Research teams can also benefit from the expert support of the Professional Services team of data scientists, bioinformaticists, ontologists and domain specialists to help them scale and accelerate their data-led projects,” commented Mark Sheehan, Vice President of Data Science, Life Sciences. “This translates into faster, safer innovation for business from data insights and predictions based on the most authoritative Datasets and underlying expertise.”
Acerca de Elsevier
Como líder mundial en información y análisis científicos, Elsevier ayuda a los investigadores y profesionales de la salud a hacer avanzar la ciencia y mejorar los resultados de salud en beneficio de la sociedad. Lo hacemos facilitando conocimientos y la toma de decisiones críticas con soluciones innovadoras basadas en contenido confiable y basado en evidencia y tecnologías digitales avanzadas habilitadas por IA. Hemos apoyado el trabajo de nuestras comunidades de investigación y atención médica durante más de 140 años. Nuestros 9500 empleados en todo el mundo, incluidos 2300 tecnólogos, se dedican a apoyar a investigadores, bibliotecarios, líderes académicos, financiadores, gobiernos, empresas intensivas en I+D, médicos, enfermeras, futuros profesionales de la salud y educadores en su trabajo crítico. Nuestras 2900 revistas científicas y libros de referencia icónicos incluyen los títulos más importantes en sus campos, incluidos Cell Press, The Lancet y Gray's Anatomy. Junto con Elsevier Foundation se abre en una nueva pestaña/ventana, trabajamos en asociación con las comunidades a las que servimos para promover la inclusión y la diversidad en la ciencia, la investigación y la atención médica en los países en desarrollo y en todo el mundo. Elsevier es parte de RELX, un proveedor global de herramientas de toma de decisiones y análisis basados en información para clientes profesionales y comerciales. Para obtener más información sobre nuestro trabajo, soluciones digitales y contenido, visite www.elsevier.com.
Contacto

TM
Terri Mueller
Vicepresidenta de Comunicaciones Globales
Elsevier
+1 908 323-9180
Correo electrónico Terri Mueller