Modern Physical Metallurgy

8th Edition

Authors: R. E. Smallman A.H.W. Ngan
Hardcover ISBN: 9780080982045
eBook ISBN: 9780080982236
Imprint: Butterworth-Heinemann
Published Date: 25th September 2013
Page Count: 720
Tax/VAT will be calculated at check-out
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Modern Physical Metallurgy describes, in a very readable form, the fundamental principles of physical metallurgy and the basic techniques for assessing microstructure. This book enables you to understand the properties and applications of metals and alloys at a deeper level than that provided in an introductory materials course.

The eighth edition of this classic text has been updated to provide a balanced coverage of properties, characterization, phase transformations, crystal structure, and corrosion not available in other texts, and includes updated illustrations along with extensive new real-world examples and homework problems.

Key Features

  • Renowned coverage of metals and alloys from one of the world's leading metallurgy educators
  • Covers new materials characterization techniques, including scanning tunneling microscopy (STM), atomic force microscopy (AFM), and nanoindentation
  • Provides the most thorough coverage of characterization, mechanical properties, surface engineering and corrosion of any textbook in its field
  • Includes new worked examples with real-world applications, case studies, extensive homework exercises, and a full online solutions manual and image bank


Mid/senior undergraduate and graduate students taking courses in metallurgy, materials science, physical metallurgy, mechanical engineering, biomedical engineering, physics, manufacturing engineering and related courses

Table of Contents



About the authors

Chapter 1. Atoms and Atomic Arrangements

1.1 The free atom

1.2 The periodic table

1.3 Interatomic bonding in materials

1.4 Bonding and energy levels

1.5 Crystal lattices and structures

1.6 Crystal directions and planes

1.7 Stereographic projection

1.8 Selected crystal structures

1.9 Imperfections in crystals

Further reading

Chapter 2. Phase Diagrams and Alloy Theory

2.1 Introduction

2.2 The concept of a phase

2.3 The Phase Rule

2.4 Stability of phases

2.5 The mechanism of phase changes

2.6 Two-phase equilibria

2.7 Three-phase equilibria and reactions

2.8 Intermediate phases

2.9 Limitations of phase diagrams

2.10 Some key phase diagrams

2.11 Ternary phase diagrams

2.12 Principles of alloy theory

Further reading

Chapter 3. Solidification

3.1 Crystallization from the melt

3.2 Continuous growth

3.3 Lateral growth

3.4 Dendritic growth

3.5 Forms of cast structure

3.6 Gas porosity

3.7 Segregation

3.8 Directional solidification

3.9 Production of metallic single crystals for research

3.10 Coring

3.11 Cellular microsegregation

3.12 Zone refining

3.13 Eutectic solidification

3.14 Continuous casting

3.15 Fusion welding

3.16 Metallic glasses

3.17 Rapid solidification processing

Further reading

Chapter 4. Introduction to Dislocations

4.1 Concept of a dislocation

4.2 Strain energy associated with dislocations

4.3 Dislocations in ionic structures

4.4 Extended dislocations and stacking faults in close-packed crystals

4.5 Sessile dislocations

4.6 Dislocation vector diagrams

4.7 Dislocations and stacking faults in cp


No. of pages:
© Butterworth-Heinemann 2014
eBook ISBN:
Hardcover ISBN:
Paperback ISBN:

About the Author

R. E. Smallman

After gaining his PhD in 1953, Professor Smallman spent five years at the Atomic Energy Research Establishment at Harwell before returning to the University of Birmingham, where he became Professor of Physical Metallurgy in 1964 and Feeney Professor and Head of the Department of Physical Metallurgy and Science of Materials in 1969. He subsequently became Head of the amalgamated Department of Metallurgy and Materials (1981), Dean of the Faculty of Science and Engineering, and the first Dean of the newly created Engineering Faculty in 1985. For five years he wasVice-Principal of the University (1987–92). He has held visiting professorship appointments at the University of Stanford, Berkeley, Pennsylvania (USA), New SouthWales (Australia), Hong Kong and Cape Town, and has received Honorary Doctorates from the University of Novi Sad (Yugoslavia), University ofWales and Cranfield University. His research work has been recognized by the award of the Sir George Beilby Gold Medal of the Royal Institute of Chemistry and Institute of Metals (1969), the Rosenhain Medal of the Institute of Metals for contributions to Physical Metallurgy (1972), the Platinum Medal, the premier medal of the Institute of Materials (1989), and the Acta Materialia Gold Medal (2004). Hewas elected a Fellowof the Royal Society (1986), a Fellowof the RoyalAcademy of Engineering (1990), a Foreign Associate of the United States National Academy of Engineering (2005), and appointed a Commander of the British Empire (CBE) in 1992. A former Council Member of the Science and Engineering Research Council, he has been Vice-President of the Institute of Materials and President of the Federated European Materials Societies. Since retirement he has been academic consultant for a number of institutions both in the UK and overseas.

Affiliations and Expertise

Emeritus Professor of Metallurgy and Materials Science, Department of Metallurgy and Materials, University of Birmingham, UK

A.H.W. Ngan

Professor Ngan obtained his PhD on electron microscopy of intermetallics in 1992 at the University of Birmingham, under the supervision of Professor Ray Smallman and Professor Ian Jones. He then carried out postdoctoral research at Oxford University on materials simulations under the supervision of Professor David Pettifor. In 1993, he returned to the University of Hong Kong as a Lecturer in Materials Science and Solid Mechanics, at the Department of Mechanical Engineering. In 2003, he became Senior Lecturer and in 2006 Professor. His research interests include dislocation theory, electron microscopy of materials and, more recently, nanomechanics. He has published over 120 refereed papers, mostly in international journals. He received a number of awards, including the Williamson Prize (for being the top Engineering student in his undergraduate studies at the University of Hong Kong), Thomas Turner Research Prize (for the quality of his PhD thesis at the University of Birmingham), Outstanding Young Researcher Award at the University of Hong Kong, and in 2007 was awarded the Rosenhain Medal of the Institute of Materials, Minerals and Mining. He also held visiting professorship appointments at Nanjing University and the Central Iron and Steel Research Institute in Beijing, and in 2003, he was also awarded the Universitas 21 Fellowship to visit the University of Auckland. He is active in conference organization and journal editorial work.

Affiliations and Expertise

Professor, Department of Mechanical Engineering, University of Hong Kong


"…this edition of the textbook has dropped the coverage of such materials as polymers, ceramics, biomaterials, sports materials, and nano-materials that appeared in earlier edition. The focus returns to the original physical metallurgy, and the material has been rearranged so that separate chapter deal with solidification, point defect behavior, interfaces and grain boundaries, precipitation hardening, and other matters.", January 2014