Imaging Genetics
1st Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
1. Genetic correlation between cortical gray matter thickness and white matter connections
2. BoSCCA: Mining Stable Imaging and Genetic Associations with Implicit Structure Learning
3. Multi-site meta-analysis of image-wide genome-wide associations with morphometry
4. Network-based analysis for subcortical imaging measures and genetics association
5. Identification of genes in lipid metabolism associated with white matter integrity in preterm infants using the graph-guided group lasso
6. Genetic connectivity: correlated genetic control of cortical thickness, brain volume and white-matter
7. Continuous inflation analysis: a threshold-free method to estimate genetic overlap and boost power in imaging genetics
8. Bayesian Feature Selection for Ultra-high Dimensional Imaging Genetics Data
9. Classifying Schizophrenia subjects by Fusing Networks from SNPs, DNA methylation and fMRI data
Description
Imaging Genetics presents the latest research in imaging genetics methodology for discovering new associations between imaging and genetic variables, providing an overview of the state-of the-art in the field. Edited and written by leading researchers, this book is a beneficial reference for students and researchers, both new and experienced, in this growing area. The field of imaging genetics studies the relationships between DNA variation and measurements derived from anatomical or functional imaging data, often in the context of a disorder. While traditional genetic analyses rely on classical phenotypes like clinical symptoms, imaging genetics can offer richer insights into underlying, complex biological mechanisms.
Key Features
- Contains an introduction describing how the field has evolved to the present, together with perspectives on its future direction and challenges
- Describes novel application domains and analytic methods that represent the state-of-the-art in the burgeoning field of imaging genetics
- Introduces a novel, large-scale analytic framework that involves multi-site, image-wide, genome-wide associations
Readership
Researchers and graduate students in medical imaging and computer vision
Details
- No. of pages:
- 182
- Language:
- English
- Copyright:
- © Academic Press 2018
- Published:
- 26th September 2017
- Imprint:
- Academic Press
- Paperback ISBN:
- 9780128139684
- eBook ISBN:
- 9780128139691
Ratings and Reviews
About the Editors
Adrian Dalca
Adrian V. Dalca is a postdoctoral fellow at Massachusetts General Hospital and Harvard Medical School. He obtained his PhD from the Massachusetts Institute of Technology in the EECS department. He is interested in mathematical models and machine learning for medical image analysis, with a focus on characterizing genetic and clinical effects on imaging phenotypes. He is also interested and active in healthcare entrepreneurship and translation of algorithms to the clinic.
Affiliations and Expertise
Postdoctoral Fellow, Massachusetts General Hospital and Harvard Medical School
Kayhan Batmanghelich
Kayhan Batmanghelich is an Assistant Professor of Department of Biomedical Informatics and Intelligent Systems Program at the University of Pittsburgh and an adjunct faculty in the Machine Learning Department at the Carnegie Mellon University. His research is at the intersection of medical vision, machine learning, and bioinformatics. He develops algorithms to analyze and understand medical image along with genetic data and other electrical health records such as the clinical report. He is interested in method development as well as translational clinical problems.
Affiliations and Expertise
Assistant Professor, Department of Biomedical Informatics, University of Pittsburgh School of Medicine
Mert Sabuncu
Mert Sabuncu is an Assistant Professor in Electrical and Computer Engineering, with a secondary appointment in Biomedical Engineering, Cornell University. His research interests are in biomedical data analysis, in particular imaging data, and with an application emphasis on neuroscience and neurology. He uses tools from signal/image processing, probabilistic modeling, statistical inference, computer vision, computational geometry, graph theory, and machine learning to develop algorithms that allow learning from large-scale biomedical data.
Affiliations and Expertise
Assistant Professor, Electrical and Computer Engineering, Secondary Appointment in Biomedical Engineering, Cornell University
Li Shen
Li Shen received a B.S. degree from Xi’an Jiao Tong University, an M.S. degree from Shanghai Jiao Tong University, and a Ph.D. degree from Dartmouth College, all in Computer Science. He is an Associate Professor of Radiology and Imaging Sciences at Indiana University School of Medicine. His research interests include medical image computing, bioinformatics, machine learning, network science, brain imaging genomics, and big data science in biomedicine.
Affiliations and Expertise
Associate Professor, Radiology and Imaging Sciences, Indiana University School of Medicine
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.