COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Eco-efficient Construction and Building Materials - 1st Edition - ISBN: 9780857097675, 9780857097729

Eco-efficient Construction and Building Materials

1st Edition

Life Cycle Assessment (LCA), Eco-Labelling and Case Studies

0.0 star rating Write a review
Authors: Fernando Pacheco-Torgal Luisa F. Cabeza Joao Labrincha Aldo Giuntini de Magalhaes
Hardcover ISBN: 9780857097675
eBook ISBN: 9780857097729
Imprint: Woodhead Publishing
Published Date: 18th December 2013
Page Count: 624
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

  • Contributor contact details
  • Woodhead Publishing Series in Civil and Structural Engineering
  • 1: Introduction to the environmental impact of construction and building materials
    • Abstract
    • 1.1 Introduction
    • 1.2 Environmental impact assessment
    • 1.3 The European Construction Products Regulation (CPR)
    • 1.4 Outline of the book
  • Part I: Life cycle assessment (LCA), eco-labelling and procurement
    • 2: Mineral resource depletion assessment
      • Abstract
      • 2.1 Introduction
      • 2.2 Definition and classification of mineral resources
      • 2.3 Trends in mineral use and depletion
      • 2.4 Dynamic analysis of mineral resource use and depletion: the Hubbert peak model
      • 2.5 From grave to cradle: A new approach to assess and account for mineral depletion
      • 2.6 Conclusions
    • 3: Life cycle assessment (LCA) of sustainable building materials: an overview
      • Abstract
      • 3.1 Introduction
      • 3.2 The environmental impact of building materials
      • 3.3 Life cycle assessment (LCA) and sustainable building materials
      • 3.4 Conclusions
    • 4: Life cycle assessment (LCA) of the building sector: strengths and weaknesses
      • Abstract
      • 4.1 Introduction
      • 4.2 The overall strengths and limitations of life cycle assessment (LCA)
      • 4.3 Strengths and weaknesses within LCA methodology
      • 4.4 Conclusions
    • 5: Using life cycle assessment (LCA) methodology to develop eco-labels for construction and building materials
      • Abstract
      • 5.1 Introduction: life cycle thinking and eco-labels
      • 5.2 Life cycle assessment (LCA)
      • 5.3 Types of eco-labels and their relation to LCA
      • 5.4 Environmental certification programmes for buildings
      • 5.5 Future trends
      • 5.6 Sources of further information and advice
    • 6: The EU Ecolabel scheme and its application to construction and building materials
      • Abstract
      • 6.1 Introduction
      • 6.2 The EU Ecolabel and the European Commission policy for sustainability
      • 6.3 History and goals of the EU Ecolabel scheme
      • 6.4 EU Ecolabel establishment procedures and criteria
      • 6.5 EU Ecolabel and green public procurement (GPP)
      • 6.6 EU Ecolabel and national ecolabelling schemes
      • 6.7 EU Ecolabel for eco-efficient construction and building materials
      • 6.8 Future trends
      • 6.9 Sources of further information and advice
      • 6.11 Appendix: abbreviations
    • 7: Environmental product declaration (EPD) labelling of construction and building materials
      • Abstract
      • 7.1 Introduction
      • 7.2 Regulatory framework
      • 7.3 Objectives and general principles
      • 7.4 Environmental product declaration (EPD) methodology
      • 7.5 EPD programmes around the world
      • 7.6 Product category rules (PCR) for construction and building materials
      • 7.7 Case studies: EPD for construction and building materials
      • 7.8 Conclusions
    • 8: Shortcomings of eco-labelling of construction and building materials
      • Abstract
      • 8.1 Introduction
      • 8.2 Typical shortcomings of eco-labels
      • 8.3 Building materials
      • 8.4 Eco-labelling of buildings
      • 8.5 Conclusions
    • 9: Green public procurement (GPP) of construction and building materials
      • Abstract
      • 9.1 Introduction
      • 9.2 Green public procurement (GPP) and sustainable public procurement (SPP) as policy instruments
      • 9.3 Policy context in the EU
      • 9.4 Policy context in selected countries
      • 9.5 The need for a paradigm shift
      • 9.6 Implementing GPP/SPP in the construction sector
      • 9.7 Key concerns for progress towards SPP
  • Part II: Assessing the environmental impact of construction and building materials
    • 10: Assessing the environmental impact of conventional and ‘green’ cement production
      • Abstract
      • 10.1 Introduction
      • 10.2 Environmental impact of ordinary Portland cement
      • 10.3 Supplementary cementitious materials (SCMs)
      • 10.4 Alternative binders
      • 10.5 Balancing function and environmental impact
      • 10.6 Conclusions and future trends
    • 11: Life cycle assessment (LCA) of concrete made using recycled concrete or natural aggregates
      • Abstract
      • 11.1 Introduction
      • 11.2 Life cycle assessment (LCA) of recycled aggregate concrete (RAC)
      • 11.3 Influence of different phases in the production process for natural and recycled concrete
      • 11.4 Research on the use of natural and recycled aggregates in concrete
      • 11.5 Analysis of the influence of the transport phase
      • 11.6 Analysis of the influence of CO2 uptake during the life cycle of concrete
      • 11.7 Conclusions and future trends
      • 11.8 Acknowledgement
    • 12: Life cycle assessment (LCA) of building thermal insulation materials
      • Abstract
      • 12.1 Introduction
      • 12.2 Thermal insulation materials and their properties
      • 12.3 Life cycle assessment (LCA) analysis of thermal insulation materials
      • 12.4 The ecological benefits of thermal insulation of external walls of buildings
      • 12.5 The economic benefits of thermal insulation
      • 12.6 Conclusions
    • 13: Life cycle assessment (LCA) of phase change materials (PCMs) used in buildings
      • Abstract
      • 13.1 Introduction to phase change materials (PCMs) and their use in buildings
      • 13.2 Investigating the use of PCMs in buildings
      • 13.3 Life cycle assessment (LCA) methodology
      • 13.4 PCM impact and selection
      • 13.5 LCA of buildings including PCMs: case studies
      • 13.6 Improvement in PCM use
      • 13.7 Problems in undertaking an LCA of buildings including PCMs
    • 14: Life cycle assessment (LCA) of wood-based building materials
      • Abstract
      • 14.1 Introduction
      • 14.2 Forestry and wood production
      • 14.3 Wood product manufacture
      • 14.4 Building with wood materials
      • 14.5 Integrated energy and material flows
      • 14.6 Wood products and climate change
      • 14.7 Wood building materials: past and future
      • 14.8 Sources of further information
      • 14.9 Acknowledgement
    • 15: The environmental impact of adhesives
      • Abstract
      • 15.1 Introduction: growth in the usage of adhesives
      • 15.2 Environmental implications of the growth in adhesive use
      • 15.3 Adhesives, adhesion and the environment
      • 15.4 Reduction of environmental impact
      • 15.5 A technical ‘fix’ for the environmental crisis
      • 15.6 Energy demand and supply
      • 15.7 The stationary state: limits to growth
      • 15.8 Conclusions and future trends
      • 15.9 Acknowledgement
    • 16: Life cycle assessment (LCA) of road pavement materials
      • Abstract
      • 16.1 Introduction
      • 16.2 Life cycle assessment (LCA) for roads
      • 16.3 LCA for motorway construction
      • 16.4 LCA for motorway use and maintenance
      • 16.5 LCA for the demolition/deconstruction of motorways
      • 16.6 Conclusions and future trends
      • 16.7 Acknowledgements
      • 16.9 Appendix: abbreviations
  • Part III: Assessing the environmental impact of particular types of structure
    • 17: Comparing the environmental impact of reinforced concrete and wooden structures
      • Abstract
      • 17.1 Introduction
      • 17.2 Environmental strengths and weaknesses of using wood and concrete in construction
      • 17.3 Life cycle assessment (LCA) for wood and concrete building design
      • 17.4 Using LCA to compare concrete and wood construction: a case study
      • 17.5 Selection and adaptation of LCA tools
      • 17.6 Life cycle impact assessment and interpretation
      • 17.7 Future trends
      • 17.8 Sources of further information and advice
    • 18: Assessing the sustainability of prefabricated buildings
      • Abstract
      • 18.1 Introduction
      • 18.2 A brief history of prefabricated buildings
      • 18.3 Types of prefabrication technologies
      • 18.4 Assessing prefabricated buildings
      • 18.5 Case study: sustainability assessment of prefabricated school buildings
      • 18.6 Conclusions, recommendations and future trends
      • 18.7 Sources of further information and advice
      • 18.8 Acknowledgments
    • 19: Life cycle assessment (LCA) of green façades and living wall systems
      • Abstract
      • 19.1 Introduction
      • 19.2 Life cycle assessment (LCA) methodology
      • 19.3 Interpretation and analysis of LCA results
      • 19.4 Interpretation of the LCA analysis
      • 19.5 Conclusions
      • 19.6 Acknowledgements
    • 20: Assessing the environmental and economic impacts of cladding systems for green buildings
      • Abstract
      • 20.1 Introduction
      • 20.2 The need for green buildings
      • 20.3 The role of cladding systems in making buildings green
      • 20.4 Implementation: assessing the eco-efficiency of cladding systems in Bahrain
      • 20.5 Interpretation and conclusions
    • 21: Life cycle assessment (LCA) of windows and window materials
      • Abstract
      • 21.1 Introduction
      • 21.2 Modern window construction
      • 21.3 The life cycle of a window
      • 21.4 Previous window life cycle assessment (LCA) studies
      • 21.5 The influence of timing on the results of window LCA
      • 21.6 Use of advanced technology
      • 21.7 Selection of environmentally friendly window materials
      • 21.8 Current developments and future trends
    • 22: Life cycle assessment (LCA) of ultra high performance concrete (UHPC) structures
      • Abstract
      • 22.1 Introduction
      • 22.2 Life cycle assessment (LCA) data and impact assessment method
      • 22.3 Impact assessment of raw materials used in ultra high performance concrete (UHPC)
      • 22.4 Impact assessment of UHPC at material level
      • 22.5 Impact assessment of structures made with UHPC
      • 22.6 Cost of UHPC
      • 22.7 Conclusions and future trends
    • 23: Life cycle assessment (LCA) of fibre reinforced polymer (FRP) composites in civil applications
      • Abstract
      • 23.1 Introduction
      • 23.2 Life cycle assessment (LCA) method
      • 23.3 LCA of fibre reinforced polymer (FRP) composites: case studies
      • Results and discussion
      • Results
      • 23.4 Summary and conclusions
  • Index


Eco-efficient Construction and Building Materials reviews ways of assessing the environmental impact of construction and building materials. Part one discusses the application of life cycle assessment (LCA) methodology to building materials as well as eco-labeling. Part two includes case studies showing the application of LCA methodology to different types of building material, from cement and concrete to wood and adhesives used in building. Part three includes case studies applying LCA methodology to particular structures and components.

Key Features

  • Reviews ways of assessing the environmental impact of construction and building materials
  • Provides a thorough overview, including strengths and shortcomings, of the life cycle assessment (LCA) and eco-labeling of eco-efficient construction and building materials
  • Includes case studies showing the application of LCA methodology to different types of building material, from cement and concrete to wood and adhesives used in building


Public and private bodies related to the construction sector: Municipalities and departments working with construction activities and sustainable infrastructure, construction companies, consultants, associations and councils; Architects; Civil engineers; Mechanical engineers; Environmental consultants; Materials scientists; Researchers and academics in the fields of civil and structural engineering, environmental engineering, and environmental management


No. of pages:
© Woodhead Publishing 2014
18th December 2013
Woodhead Publishing
Hardcover ISBN:
eBook ISBN:

Ratings and Reviews

About the Authors

Fernando Pacheco-Torgal

Fernando Pacheco-Torgal

F.Pacheco Torgal is a Principal Investigator at C-TAC Research Centre, University of Minho. He holds the Counsellor title of the Portuguese Engineers Association. Authored almost 350 publications some that were cited by Highly Cited authors (SCI h-index>60) and in high impact factor journals like Nature Reviews Mat. (IF=52), Nature Energy (IF=47), Progress in Mater. Science (I.F=24), Physics Reports (IF=20) and Nature Climate Change (I.F=19). Citations received in ISI WoS journals-2819 (h-index=29), citations received in Scopus journals- 3580 (h-index=31). Citations prediction for the year 2029 (around 5.500 citations on WoS, 7.500 on Scopus (already has 7000 MR, h=45) and 16.000 citations on scholar google). Member of the editorial board of 9 international journals, 4 referenced on the Web of Science and three referenced on Scopus. Grant assessor for several scientific institutions in 14 countries, UK, US, Netherlands, China, France, Australia, Croatia, Kazakhstan, Belgium, Spain, Czech Republic, Saudi Arabia, UA.Emirates, Poland and also the EU Commission. Invited reviewer for 133 international journals for which he reviewed so far almost 900 papers. Lead Editor of 19 international books (9 being on the Master Book List of Web of Science).

Affiliations and Expertise

Principal Investigator, C-TAC Research Centre, University of Minho, Portugal

Luisa F. Cabeza

Luisa F. Cabeza is Professor at the University of Lleida (Spain) where she leads the GREA research group. She has co-authored over 100 journal papers and several book chapters. Luisa F. Cabeza received her PhD in Industrial Engineering in 1996 from the University Ramon Llull, Barcelona, Spain. She also holds degrees in Chemical Engineering (1992) and in Industrial Engineering (1993), as well as an MBA (1995) from the same University. Her interests include the different TES technologies (sensible, latent and thermochemical), applications (buildings, industry, refrigeration, CSP, etc.), and social aspects. She also acts as subject editor of the journals Renewable Energy, and Solar Energy.

Affiliations and Expertise

Professor, University of Lleida, Spain

Joao Labrincha

João Labrincha is Associate Professor in the Materials and Ceramics Engineering Department of the University of Aveiro, Portugal, and member of the CICECO research unit. He has registered 22 patent applications, and has published over 170 papers.

Affiliations and Expertise

University of Aveiro, Portugal

Aldo Giuntini de Magalhaes

Aldo Giuntini de Magalhães is a Professor in the Department of Materials Engineering and Construction at the Federal University of Minas Gerais, Brazil, and coordinates government research projects related to the area of Sustainable Buildings.

Affiliations and Expertise

Federal University of Minas Gerais, Brazil