Description

Welding and joining techniques play an essential role in both the manufacture and in-service repair of aerospace structures and components, and these techniques become more advanced as new, complex materials are developed. Welding and joining of aerospace materials provides an in-depth review of different techniques for joining metallic and non-metallic aerospace materials.

Part one opens with a chapter on recently developed welding techniques for aerospace materials. The next few chapters focus on different types of welding such as inertia friction, laser and hybrid laser-arc welding. The final chapter in part one discusses the important issue of heat affected zone cracking in welded superalloys. Part two covers other joining techniques, including chapters on riveting, composite-to-metal bonding, diffusion bonding and recent improvements in bonding metals. Part two concludes with a chapter focusing on the use of high-temperature brazing in aerospace engineering. Finally, an appendix to the book covers the important issue of linear friction welding.

With its distinguished editor and international team of contributors, Welding and joining of aerospace materials is an essential reference for engineers and designers in the aerospace, materials and welding and joining industries, as well as companies and other organisations operating in these sectors and all those with an academic research interest in the subject.

Key Features

  • Provides an in-depth review of different techniques for joining metallic and non-metallic aerospace materials
  • Discusses the important issue of heat affected zone cracking in welded superalloys
  • Covers many joining techniques, including riveting, composite-to-metal bonding and diffusion bonding

Readership

Engineers and designers in the aerospace, materials and welding and joining industries; companies and other organizations operating in these sectors and all those with an academic research interest in the subject.

Table of Contents

Contributor contact details

Preface

Part I: Welding techniques

Chapter 1: New welding techniques for aerospace engineering

Abstract:

1.1 Introduction

1.2 Airworthiness implications of new welding and joining technologies

1.3 New developments in welding and joining of aerospace materials

1.4 Failure of welded and bonded joints in service

1.5 The importance of international standards

Chapter 2: Inertia friction welding (IFW) for aerospace applications

Abstract:

2.1 Introduction

2.2 Process parameters, heat generation and modelling

2.3 Microstructural development

2.4 Development of mechanical properties

2.5 Residual stress development

2.6 Future trends

2.7 Source of further information and advice

Chapter 3: Laser welding of metals for aerospace and other applications

Abstract:

3.1 Introduction

3.2 Operating principles and components of laser sources – an overview

3.3 Key characteristics of laser light

3.4 Basic phenomena of laser light interaction with metals

3.5 Laser welding fundamentals

3.6 Laser weldability of titanium alloys

3.7 Future trends

3.8 Sources of further information and advice

Chapter 4: Hybrid laser-arc welding of aerospace and other materials

Abstract:

4.1 Introduction

4.2 Fundamentals of hybrid laser-arc welding

4.3 Hybrid laser-arc welding of aeronautical materials

4.4 Future trends

Chapter 5: Heat-affected zone cracking in welded nickel superalloys

Abstract:

5.1 Introduction

5.2 Characteristics of crack-inducing intergranular liquid and factors that affect heat-affected zone (HAZ) cracking

5.3 Formation of HAZ grain-boundary liquid

5.4 Constitutional liquation of second-phase particles in nickel-based superalloys

5.5 Role o

Details

No. of pages:
448
Language:
English
Copyright:
© 2012
Published:
Imprint:
Woodhead Publishing
Print ISBN:
9781845695323
Electronic ISBN:
9780857095169

About the editor

M C Chaturvedi

Mahesh C. Chaturvedi is Professor Emeritus in the Department of Mechanical and Manufacturing Engineering at the University of Manitoba, Canada.

Reviews

"…enough metallurgical information to impress and inspire the specialist researcher, while engineers, designers and mature students will learn much about the practicalities of joining materials…the bulk of text is first rate."--The Aeronautical Journal, January 2013
This collection of papers contains over 750 references and enough metallurgical information to impress and inspire the specialist researcher, while engineers, designers and mature students will learn much about the practicalities of joining materials. […] The bulk of text is first rate., The Aeronautical Journal