Trends in Optical Non-Destructive Testing and Inspection - 1st Edition - ISBN: 9780080430201

Trends in Optical Non-Destructive Testing and Inspection

1st Edition

Editors: P.K. Rastogi D. Inaudi
Hardcover ISBN: 9780080430201
Imprint: Elsevier Science
Published Date: 15th May 2000
Page Count: 654
Tax/VAT will be calculated at check-out Price includes VAT (GST)

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


This book covers a wide range of measurement techniques broadly referred to as Optical Metrology, with emphasis on their applications to nondestructive testing. If we look separately at each of the two terms making the generic name Optical Metrology, we find a link to two of the most distinctive aspects of humans: a particularly well developed sense of vision and a desire to classify things using numbers and rules.

Of all our five senses, vision is certainly the most developed and the closest to the rational part of our brain. It can be argued that our memory is strongly dependent on images and the brain is particularly good at processing the stimuli received from these images to extract information. Measuring, sizing and counting are, on the other hand, among the fundamental building blocks of modern society. The use of abstract quantities like size, value or intensity has simplified the description of complex enquiry and is the basis of modern science and economy. Hence, it would seem natural that the combination of two such basic aspects should result in the birth of a new field of science. However, it is known that his has not been the case. Optical Metrology remains classified as a group of special techniques used mainly in niche applications. Optical Metrology may be rightly described as an ensemble of techniques in which fields such as physics, electrical and mechanical engineering, and computer science merge and blend in new ways.

This book is intended as a tribute to the career of Professor Léopold Pflug. By looking back at his lifelong commitment to the application of optical metrology to the service of engineering sciences, more particularly devoted to the observation of the real behavior of structural components, one can retrace the major revolutions that have taken place in this domain. Starting his activity in 1971 as the head of the Laboratory for Stress Analysis at the EPFL in Switzerland, he first employed photoelasticity as a tool to improve the understanding of the real behavior of complex structures. However he soon recognized the necessity of working with the real materials used to build these structures instead of on replicas made of optically birefringent materials. He then focussed on the use of moiré techniques which sparked his fascination with laser-based holography and speckle-based methods. The advent of information technology led him to open up to the use of ESPI and digital image processing techniques. Finally, in the mid 1990s he became interested in the use of optical fibers as a tool for sensing deformations inside structures, not only on their surfaces as in the case of whole-field methods. It is interesting to note the parallel in the evolution of optical metrology vis à vis developments in other fields: the development of lasers led to holographic interferometry, the availability of frame-grabbers led to ESPI and the emergence of fiber optic communications opened the way to the development of fiber optic sensors. This puts in sharp perspective the strong dependence of optical metrology on the latest technology for its development. Also interesting to note is that all fields in optical metrology touched upon by Professor Pflug are still of great relevance, as shown by the contributions in this volume.

This book is, however, not intended as a commemoration, rather as an occasion to review the trends and undercurrents that are driving the field of optical metrology, with emphasis on nondestructive testing. All the authors were asked to summarize the recent achievements in their respective fields and to speculate about the future. As a result it has become apparent that it is difficult although not impossible to spot general trends in these disparate fields. Optical metrology has considerably benefited from some of the most important innovations of the recent past: lasers, computers and fiber optics communication, all of which found their direct inspiration from the developments in the world of electronics.

In recent years we have also witnessed a shift of power from states to corporations. This has created the need to produce quick results useful to industry. Optical nondestructive testing has certainly adapted to this evolution, and several contributions in this book show that the researchers in this field understand the importance of developing technology that can be used by the industry to solve specific problems. We should also not forget that optical nondestructive testing is essentially a "service technology" and should as such not only focus on serving its clients in the best possible way, but also should continually emphasize, extend and enhance its services to new users still unaware of its potential. Hopefully this book will help in spreading awareness of the potentials of optical metrology and in focusing on the challenges of the future.


Scientists and engineers researching and specialising in the field of optical metrology

Table of Contents

Selected chapter headings and sub-headings: The Impact of New Measurement Systems on Structural Engineering (I.F.C. Smith). Traditional structure engineering. Examples of new measurement systems. Performance based structural engineering. Methods of Interferogram Analysis (D. Malacara-Hernandez). How interferograms are produced. Early methods for the analysis of interferograms. Demodulation of interferograms with a spatial carrier. Phase shifting interferometry. Phase detection algorithms. Active Phase Measuring Metrology (W. Osten, M. Kujawinska). Direct and inverse problems. The formation and evaluation of fringe patterns. Some examples for active phase measuring optical metrology. Customized Phase Shift Algorithms (Y. Surrel). Requirements on the algorithm. Determination of the characteristic diagram. Determination of the algorithm. Noise. Examples of algorithms. Object Deformation Measurement by Holographic Interferometry. Analysis on Curved Surfaces. Aspects of Generalization (W. Schumann). First derivative of the optical path difference. Strain and rotation. Deformation of geodesic curves. Integrability. Transverse ray aberration. Fringe and visibility vectors. Second derivative of the optical path difference. Fringe curvature. Digital Holographic Interferometry (T. Kreis). CCD recording of holograms. Reconstruction of digitally recorded holograms. Holographic Interferometric Microscopy (G. Wernicke). Basic considerations. Experimental arrangement. Speckle Displacement and Decorrelation — Theory and Applications (I. Yamaguchi). Correlation properties of speckle for linear system. Detection of speckle displacement. Applications of speckle displacement. Concept of Speckle Photography For In-Plane Strain Determination (P.K. Rastogi). Speckle pattern as a surface finger print. Speckle photography as an in-plane measurement tool: point-wise approach. Principle of speckle shearing photography. ESPI - Principles and Prospects (E. Hack). Need for imaging methods. Interference and speckle effect. Speckle pattern correlation interferometry. Measurable quantities and interferometer types. Pulsed ESPI (A.J. Moore et al.). Harmonic vibration measurement (dual-pulse and stroboscopic ESPI). Repeatable transient deformation measurements (dual-pulse ESPI). Nonrepeatable transient deformation measurements (high-speed cameras). Electronic Speckle Pattern Interferometry (ESPI) and Related Techniques: Current and Future Applications in the Automotive Industry (F. Chen et al.). Vibration measurement. Deformation/strain measurement. Nondestructive testing. Transient event measurement. Trends and future work. Artwork Inspection Using Electronic Speckle Pattern Interferometry (D. Paoletti et al.). General remarks on artwork decay. ESPI experimental arrangements for in situ operation. Digital processing of ESPI images. Application in artwork diagnostics. Problem perspective and further development. Digital Shearography and Applications (Y.Y. Hung). Principles of digital shearography. Applications. Limitations and remedies. Spectral and Temporal Phase Evaluation for Interferometry and Speckle Applications (H.J. Tiziani). Wavelength-scanning interferometry. Temporal speckle pattern interferometry for out-of-plane deformation. Speckle shearing interferometer for the measurement of large deformations. Shape measurement by temporal phase evaluation. Heterodyne temporal speckle pattern interferometry. Moiré in Science and Engineering (C.A. Sciammarella). Gratings as carriers of displacement information. In-plane displacements. The moiré method. Three-dimensional problems. Optical processing of displacement information. Techniques to observe intrinsic moiré patterns. Measurements of slopes. Reflection moiré. Computer processing of moiré patterns. Digital Moiré for Deformation Analysis (A. Asundi). Digital moiré principles. Projection moiré. Real-Time Phase Distribution Analysis in Moiré (Y. Morimoto, M. Fujigaki). Geometric moiré method and scanning moiré method (GMM & SMM). Phase-shifting scanning moiré method (PSSMM). Phase-difference scanning moiré (PDSMM). Phase-shifting method (PSM). Phase-shifting method using correlation with rectangular function (PSM/CR). Integrated phase-shifting method (IPSM). Distributed Deformation Sensors (L. Thevenaz). Stimulated Brillouin scattering. Future trends. Application of Fiber Optic Sensors to Structural Monitoring (D. Inaudi). Monitoring as a structure management tool. Long-fibre optic sensor types. Reliability of Fiber Optic Sensors (U. Sennhauser, Ph.M. Nellen). Reliability of fiber optic sensor components. Reliability of fiber optic sensing systems. Fiber Optic Gyros (K. Hotate). Configurations and noise factors of interferometer fiber optic gyro. Applications of interferometer fiber optic gyro. Monolithically integrated optical waveguide gyro. Detection and Characterization of Flaws by Laser-Ultrasonics (J.-P. Monchalin). Principles of generation. Principles of detection. Detection of flaws in polymer-matrix composite materials. Detection of small defects in objects by laser-ultrasonics and SAFT processing. Recent Advances in Digital Photoelasticity (T.Y. Chen). Basic principles of photoelasticity. Digital image processing. Digital analysis of photoelastic fringe patterns. Fourier Transform Profilometry (M. Takeda). Classical fourier transform profilometry. Spatial frequency-multiplex fourier transform profilometry. Fourier transform speckle profilometry. Approaches in Flow Visualization (W. Merkkirch). Flow visualization by tracer material. Visualization by refractive index changes. Computer Vision Applied to Shape and Deformation Measurement (M.A. Sutton et al.). Two-dimensional digital image correlation method. Three-dimensional digital image correlation method. Applications of Infrared Thermography in Nondestructive Evaluation (X. Maldague). Active and passive thermography for NDE. Advantages and difficulties of IR thermography. Theory. Passive thermography. Active thermography. Trends.


No. of pages:
© Elsevier Science 2000
Elsevier Science
Hardcover ISBN:

About the Editor

P.K. Rastogi

Affiliations and Expertise

Laboratory of Stress Analysis (IMAC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1012 Lausanne, Switzerland.

D. Inaudi

Affiliations and Expertise

SMARTEC SA, via al Molino 6, CH-6916 Grancia, Switzerland.