
Treatise on Geophysics
Free Global Shipping
No minimum orderDescription
Treatise on Geophysics, Second Edition, Eleven Volume Set is a comprehensive and in-depth study of the physics of the Earth beyond what any geophysics text has provided previously. Thoroughly revised and updated, it provides fundamental and state-of-the-art discussion of all aspects of geophysics. A highlight of the second edition is a new volume on Near Surface Geophysics that discusses the role of geophysics in the exploitation and conservation of natural resources and the assessment of degradation of natural systems by pollution. Additional features include new material in the Planets and Moon, Mantle Dynamics, Core Dynamics, Crustal and Lithosphere Dynamics, Evolution of the Earth, and Geodesy volumes. New material is also presented on the uses of Earth gravity measurements. This title is essential for professionals, researchers, professors, and advanced undergraduate and graduate students in the fields of Geophysics and Earth system science.
Key Features
- Comprehensive and detailed coverage of all aspects of geophysics
- Fundamental and state-of-the-art discussions of all research topics
- Integration of topics into a coherent whole
Readership
Professionals, researchers, professors, and advanced undergraduate and graduate students working in the fields of geophysics, earth system science, geology, geomagnetism, ocean science, planetary and aerospace science, environmental science, seismology, petrology, mining and construction, urban planning, plus more.
Table of Contents
- Preface
- Editor-in-Chief
- Permission Acknowledgments
- Volume 1: Deep Earth Seismology
- 1.01. Deep Earth Seismology: An Introduction and Overview
- Abstract
- 1.01.1 Developments from the Late Nineteenth Century until the Early 1950s
- 1.01.2 Developments from 1950s to the Early 1980s
- 1.01.3 From 1980 to Present: The Era of Tomography and Broadband Digital Seismic Networks
- 1.01.4 Current Issues in Global Tomography
- References
- Relevant Website
- 1.02. Theory and Observations - Instrumentation for Global and Regional Seismology
- Abstract
- Acknowledgments
- 1.02.1 Introduction
- 1.02.2 Seismic Signals and Noise
- 1.02.3 Seismometers and Systems
- References
- Further Reading
- 1.03. Theory and Observations - Earth's Free Oscillations
- Abstract
- Acknowledgments
- 1.03.1 Introduction
- 1.03.2 Equations of Motion and Hamilton's Principle
- 1.03.3 Spherical Harmonics and Generalized Spherical Harmonics
- 1.03.4 The Green's Function for the Spherically Symmetric Earth
- 1.03.5 Numerical Solution of the Radial Equations
- 1.03.6 Elastic Displacement as a Sum Over Modes
- 1.03.7 The Normal Mode Spectrum
- 1.03.8 Normal Modes and Theoretical Seismograms in Three-Dimensional Earth Models
- 1.03.9 Concluding Discussion
- References
- 1.04. Theory and Observations: Normal Mode and Surface Wave Observations
- Abstract
- Acknowledgments
- 1.04.1 Introduction
- 1.04.2 Free Oscillations
- 1.04.3 Surface Waves
- 1.04.4 Concluding Remarks
- References
- Relevant Website
- 1.05. Theory and Observations: Body Waves, Ray Methods, and Finite-Frequency Effects
- Abstract
- Acknowledgments
- 1.05.1 Introduction
- 1.05.2 Ray Theory
- 1.05.3 Rays at Interfaces
- 1.05.4 Ray Seismograms
- 1.05.5 Finite-Frequency Effects
- 1.05.6 Discussion
- 1.05.7 Conclusion
- References
- 1.06. Theory and Observations: Forward Modeling: Synthetic Body Wave Seismograms
- Abstract
- 1.06.1 Introduction
- 1.06.2 Plane Wave Modeling
- 1.06.3 Structural Effects
- 1.06.4 Modeling Algorithms and Codes
- 1.06.5 Parameterization of the Earth Model
- 1.06.6 Instrument and Source
- 1.06.7 Heterogeneity, Attenuation, and Anisotropy
- 1.06.8 Conclusions
- References
- 1.07. Theory and Obeservations - Forward Modeling and Synthetic Seismograms, 3D Numerical Methods
- Abstract
- Acknowledgments
- 1.07.1 Introduction
- 1.07.2 The Challenge
- 1.07.3 Equation of Motion
- 1.07.4 Strong Implementations
- 1.07.5 Weak Implementations
- 1.07.6 Discussion and Conclusions
- References
- 1.08. Theory and Observations - Seismology and the Structure of the Earth: Teleseismic Body-Wave Scattering and Receiver-Side Structure
- Abstract
- 1.08.1 Introduction
- 1.08.2 Geometrical Preliminaries
- 1.08.3 Source Removal
- 1.08.4 1-D Inversion
- 1.08.5 Multidimensional Inversion
- 1.08.6 Beyond the Born Approximation
- 1.08.7 Conclusions
- References
- 1.09. Theory and Observations - Seismic Anisotropy
- Abstract
- Acknowledgments
- 1.09.1 Introduction
- 1.09.2 Basic Theory of Seismic Anisotropy
- 1.09.3 Seismological Observations of Anisotropy
- 1.09.4 Perspectives
- References
- 1.10. Theory and Observations - Seismic Tomography and Inverse Methods
- Abstract
- Acknowledgments
- 1.10.1 Introduction to Seismic Tomography
- 1.10.2 Data Types in Seismic Tomography
- 1.10.3 Model Parameterization
- 1.10.4 Model Solution
- 1.10.5 Solution Quality
- 1.10.6 Future Directions
- References
- 1.11. Crust and Lithospheric Structure - Global Crustal Structure
- Abstract
- Acknowledgments
- 1.11.1 Introduction, Purpose, and Scope
- 1.11.2 Geology, Tectonics, and Earth History
- 1.11.3 Seismic Techniques for Determining the Structure of the Crust and Uppermost Mantle
- 1.11.4 Nonseismic Constraints on Crustal Structure
- 1.11.5 Structure of Oceanic Crust and Continental Margins
- 1.11.6 Structure of Continental Crust
- 1.11.7 Global Crustal Models
- 1.11.8 Discussion and Conclusions
- References
- 1.12. Crust and Lithospheric Structure - Seismic Imaging and Monitoring with Ambient Noise Correlations
- Abstract
- 1.12.1 Introduction
- 1.12.2 Noise Origin
- 1.12.3 Principle of the Method: The Heuristic Approach
- 1.12.4 Mathematical Results
- 1.12.5 Practical Limitations
- 1.12.6 Processing
- 1.12.7 Applications
- 1.12.8 Conclusions
- References
- 1.13. Crust and Lithospheric Structure - Seismic Structure of Mid-Ocean Ridges
- Abstract
- Acknowledgments
- 1.13.1 Introduction
- 1.13.2 Mantle Upwelling and Melting Beneath Oceanic Spreading Centers
- 1.13.3 Formation of Oceanic Crust
- 1.13.4 Remaining Unsolved Problems
- References
- 1.14. Crust and Lithospheric Structure - Hot Spots and Hot-Spot Swells
- Abstract
- Acknowledgment
- 1.14.1 Introduction to Hot Spots
- 1.14.2 Types of Hot Spots
- 1.14.3 Geophysical Characteristics of Hot Spots
- 1.14.4 Seismic Constraints on Crust and Lithosphere
- 1.14.5 Conclusions
- References
- 1.15. Crust and Lithospheric Structure - Active Source Studies of Crust and Lithospheric Structure
- Abstract
- Acknowledgments
- 1.15.1 Introduction
- 1.15.2 Vertical-Incidence and Wide-Angle Seismology
- 1.15.3 Background
- 1.15.4 Reflection Seismology
- 1.15.5 The CMP Method in Reflection Seismology
- 1.15.6 Migration
- 1.15.7 Reflection Seismology Examples
- 1.15.8 Refraction/Wide-Angle Seismology
- 1.15.9 Wide-Angle Seismology Experiments
- 1.15.10 Data Processing
- 1.15.11 Model Dimension
- 1.15.12 Forward Modeling
- 1.15.13 Traveltime Inversion and Tomography: Theory and Practical Issues
- 1.15.14 Traveltime Inversion and Tomography: Algorithms
- 1.15.15 Amplitude Modeling
- 1.15.16 S-Waves, Density, Attenuation, and Anisotropy
- 1.15.17 Fine-Scale Heterogeneities
- 1.15.18 Joint Inversion
- 1.15.19 Model Assessment
- 1.15.20 Wide-Angle Migration
- 1.15.21 Wavefield Inversion
- 1.15.22 Wavefield Inversion Examples
- 1.15.23 Future Directions
- References
- Relevant Website
- 1.16. Crust and Lithospheric Structure – Natural Source Portable Array Studies of the Continental Lithosphere
- Abstract
- 1.16.1 Introduction
- 1.16.2 Natural Source Portable Array Seismology
- 1.16.3 Seismic Structure of Tectonically Active Regions
- 1.16.4 Stable Platforms
- 1.16.5 Archean Cratons
- 1.16.6 Seismic Constraints on Composition and Temperature of the Continental Lithosphere
- 1.16.7 EarthScope, USArray, and the Future of Portable Array Seismology
- 1.16.8 Discussion
- References
- Relevant Websites
- 1.17. Crustal and Lithospheric Structures Between the Alps and East European Craton from Long-Range Controlled Source Seismic Experiments
- Abstract
- 1.17.1 Introduction: Regional Geologic/Tectonic Setting of Central Europe
- 1.17.2 A New Generation of Long-Range Seismic Experiments
- 1.17.3 Characteristics of the Seismic Wavefields along Profiles for Different Tectonic Provinces (Terranes)
- 1.17.4 Examples of 2-D and 3-D Modeling of the Earth's Crust and Lower Lithosphere
- 1.17.5 Geotectonic Models of the Transition from the EEC to the Eastern Alps, Carpathians, and Pannonian Basin
- 1.17.6 Summary
- References
- 1.18. Crust and Lithospheric Structure - Seismological Constraints on the Lithosphere-Asthenosphere Boundary
- Abstract
- Acknowledgments
- 1.18.1 Definitions of the Lithosphere and Asthenosphere
- 1.18.2 Origins of the Seismological Lithosphere–Asthenosphere Boundary
- 1.18.3 Imaging the Seismological LAB
- 1.18.4 The Seismological LAB Beneath Oceans
- 1.18.5 The Seismological LAB Beneath Continents
- 1.18.6 Conclusions
- References
- 1.19. Deep Earth Structure - Upper Mantle Structure: Global Isotropic and Anisotropic Elastic Tomography
- Abstract
- Acknowledgments
- 1.19.1 Introduction
- 1.19.2 Effects of Seismic Velocity and Anisotropy on Seismograms
- 1.19.3 Upper Mantle Tomography of Seismic Velocity and Anisotropy
- 1.19.4 Geodynamic Applications
- 1.19.5 Numerical Modeling and Perspectives
- Appendix Effect of Anisotropy on Surface Waves in the Plane-Layered Medium
- References
- Relevant Websites
- 1.20. Deep Earth Structure - Subduction Zone Structure in the Mantle Transition Zone
- Abstract
- Acknowledgments
- 1.20.1 Introduction
- 1.20.2 Global View of Subduction Zone Structure in the Transition Zone
- 1.20.3 Slab Signatures Above and Below the 660-km Discontinuity
- 1.20.4 Seismic Images of Slab Descent Through the Transition Zone
- 1.20.5 Summary
- References
- 1.21. Deep Earth Structure - Transition Zone and Mantle Discontinuities
- Abstract
- Acknowledgment
- 1.21.1 Introduction
- 1.21.2 The Mantle Transition Zone
- 1.21.3 The Gutenberg Discontinuity (LAB)
- 1.21.4 The Lehmann Discontinuity
- 1.21.5 The Hales Discontinuity
- 1.21.6 Conclusions
- References
- Glossary
- 1.22. Deep Earth Structure: Lower Mantle and D″
- Abstract
- Acknowledgment
- 1.22.1 Lower Mantle and D″ Basic Structural Attributes
- 1.22.2 One-Dimensional Lower Mantle Structure
- 1.22.3 Three-Dimensional Lower Mantle Structure
- 1.22.4 D″ Region
- 1.22.5 D″ Discontinuities
- 1.22.6 Large Low-Shear-Velocity Provinces
- 1.22.7 Ultralow-Velocity Zones
- 1.22.8 Lower Mantle Anisotropy
- 1.22.9 Small-Scale Heterogeneities
- 1.22.10 Conclusions
- References
- Glossary
- 1.23. Deep Earth Structure: The Earth’s Cores
- Abstract
- 1.23.1 Introduction
- 1.23.2 The Discovery of the Core
- 1.23.3 Investigation Tools
- 1.23.4 Radial Structure of the Core in Global Earth Models
- 1.23.5 The Major Discontinuities
- 1.23.6 The Liquid Outer Core
- 1.23.7 The Inner Core: Seismic Velocities
- 1.23.8 The Inner Core: Seismic Attenuation
- 1.23.9 Inner Core: Differential Rotation with Respect to the Mantle
- 1.23.10 Conclusion
- References
- 1.24. Deep Earth Structure: Seismic Scattering in the Deep Earth
- Abstract
- Acknowledgments
- 1.24.1 Introduction
- 1.24.2 Scattering Theory
- 1.24.3 Scattering Observations
- 1.24.4 Discussion
- References
- 1.25. Deep Earth Structure: Q of the Earth from Crust to Core
- Abstract
- Acknowledgment
- 1.25.1 Introduction
- 1.25.2 Early Studies
- 1.25.3 Frequency Dependence of Q
- 1.25.4 1D Global Mantle Q Models
- 1.25.5 Q in the Core
- 1.25.6 Global 3D Attenuation Structure in the Upper Mantle
- 1.25.7 Regional Q Variations in the Crust and Uppermost Mantle
- 1.25.8 Conclusions
- References
- Relevant Websites
- 1.26. Constraints on Seismic Models from Other Disciplines - Constraints from Mineral Physics on Seismological Models
- Abstract
- Acknowledgments
- 1.26.1 Introduction
- 1.26.2 Mineral Elasticity
- 1.26.3 Rock Elasticity
- 1.26.4 Seismological Elasticity and Anelasticity
- 1.26.5 Conclusions and Outlook
- References
- 1.27. Constraints on Seismic Models from Other Disciplines - Constraints on 3-D Seismic Models from Global Geodynamic Observables: Implications for the Global Mantle Convective Flow
- Abstract
- Acknowledgments
- 1.27.1 Introduction
- 1.27.2 Geodynamic Observables and Mantle Flow Theory
- 1.27.3 Modeling Geodynamic Observables with Seismic Tomography
- 1.27.4 Joint Seismic–Geodynamic Inversions for 3-D Structure and Flow in the Mantle
- 1.27.5 Concluding Remarks
- References
- 1.01. Deep Earth Seismology: An Introduction and Overview
- Volume 2: Mineral Physics
- 2.01. Mineral Physics: An Introduction and Overview
- Abstract
- References
- 2.02. Mineralogy of the Earth: Phase Transitions and Mineralogy of the Upper Mantle
- Abstract
- Acknowledgment
- 2.02.1 Introduction
- 2.02.2 Chemical and Mineralogical Composition of the Upper Mantle
- 2.02.3 Experimental Petrology and the Mineralogical Composition of the Earth's Upper Mantle
- 2.02.4 Phase Transitions in Dry Earth's Upper Mantle
- 2.02.5 Mineralogy and Transitions in the Upper Mantle at Subduction Zones
- 2.02.6 Conclusions
- References
- 2.03. Phase Transitions and Mineralogy of the Lower Mantle
- Abstract
- Acknowledgments
- 2.03.1 Introduction
- 2.03.2 Experimental and Theoretical Backgrounds
- 2.03.3 Mineral Phase Transitions in the Lower Mantle
- 2.03.4 Phase Transitions and Density Changes in Mantle and Slab Materials
- 2.03.5 Mineralogy of the Lower Mantle
- 2.03.6 Summary
- References
- 2.04. Mineralogy of the Earth: Trace Elements and Hydrogen in the Earth's Transition Zone and Lower Mantle
- Abstract
- Acknowledgments
- 2.04.1 Introduction
- 2.04.2 Crystal–Melt Partition Coefficients and Controlling Factors
- 2.04.3 Implications for Planetary Differentiation and Trace Element Distribution in the Deep Mantle
- 2.04.4 Water in the Deep Mantle
- 2.04.5 Conclusions
- References
- 2.05. Mineralogy of the Deep Mantle – The Post-Perovskite Phase and its Geophysical Significance
- Abstract
- Acknowledgments
- 2.05.1 Lower Mantle Mineralogy
- 2.05.2 Post-Perovskite Phase
- 2.05.3 D″ Region and Evidence for Post-Perovskite
- 2.05.4 Transport Properties
- 2.05.5 Geodynamic Consequences of Post-Perovskite
- 2.05.5 Conclusions
- References
- Glossary
- 2.06. Earth's Core: Iron and Iron Alloys
- Abstract
- Acknowledgments
- 2.06.1 Introduction
- 2.06.2 Seismological Observations of Earth's Core
- 2.06.3 The Structure and Anisotropy of Iron in the Inner Core
- 2.06.4 Thermoelastic Properties of Solid Iron
- 2.06.5 The Temperature in Earth's Core
- 2.06.6 Physical Properties of Liquid Iron
- 2.06.7 Evolution of the Core
- 2.06.8 The Composition of the Core
- 2.06.9 Summary
- References
- 2.07. Mineralogy of Super-Earth Planets
- Abstract
- Acknowledgments
- 2.07.1 Introduction
- 2.07.2 Overview of Super-Earths
- 2.07.3 Theoretical and Experimental Techniques for Ultrahigh-Pressure Research
- 2.07.4 Equations of State
- 2.07.5 Mineralogy at Super-Earth Interior Conditions
- 2.07.6 Physical Properties of Minerals at Super-Earth Conditions
- 2.07.7 Summary and Outlook
- References
- 2.08. Thermodynamics, Phase Transitions, Equations of State, and Elasticity of Minerals at High Pressures and Temperatures
- Abstract
- Acknowledgments
- 2.08.1 Thermodynamics of Crystals
- 2.08.2 Equations of State and Elasticity
- 2.08.3 Phase Transitions of Crystals
- 2.08.4 A Few Examples of the Discussed Concepts
- References
- 2.09. Lattice Vibrations and Spectroscopy of Mantle Phases
- Abstract
- Acknowledgments
- Outline
- References
- 2.10. Multi-Anvil Cells and High Pressure Experimental Methods
- Abstract
- 2.10.1 Introduction
- 2.10.2 Multi-anvil Apparatuses
- 2.10.3 High-Pressure and High-Temperature Synthesis Experiments
- 2.10.4 In Situ x-Ray Observations Using SR
- 2.10.5 New Applications
- 2.10.6 Future Perspectives
- References
- 2.11. Theory and Practice: Diamond-Anvil Cells and Probes for High-P–T Mineral Physics Studies
- Abstract
- 2.11.1 Diamond-Anvil Cell as a Window to the Earth's Interior
- 2.11.2 Generation and Characterization of High Pressures
- 2.11.3 Temperature
- 2.11.4 Optical Probes
- 2.11.5 x-Ray Probes
- References
- 2.12. Theory and Practice: Techniques for Measuring High-P–T Elasticity
- Abstract
- Acknowledgment
- 2.12.1 Introduction
- 2.12.2 Static Compression
- 2.12.3 Ultrasonic Methods
- 2.12.4 Light Scattering Techniques
- 2.12.5 Inelastic x-Ray Scattering
- 2.12.6 Shock Waves
- 2.12.7 Other Techniques
- References
- 2.13. Measuring High-Pressure Electronic and Magnetic Properties
- Abstract
- Abbreviations
- Acknowledgment
- 2.13.1 Introduction
- 2.13.2 Overview of Fundamentals
- 2.13.3 Electronic and Magnetic Excitations
- 2.13.4 Overview of Experimental Techniques
- 2.13.5 Selected Examples
- 2.13.6 Conclusions
- References
- Glossary
- 2.14. Methods for the Study of High P–T Deformation and Rheology
- Abstract
- 2.14.1 Introduction
- 2.14.2 Importance of High-Pressure Rheology Measurements
- 2.14.3 High-Pressure Tools
- 2.14.4 New Insights
- 2.14.5 Conclusion
- References
- 2.15. The Ab Initio Treatment of High-Pressure and High-Temperature Mineral Properties and Behavior
- Abstract
- Acknowledgments
- 2.15.1 Introduction
- 2.15.2 First-Principles Techniques
- 2.15.3 Mineral Properties and Behavior
- 2.15.4 Conclusions
- References
- 2.16. Dynamic Compression
- Abstract
- 2.16.1 Dynamic Compression Versus Static Compression
- 2.16.2 Experimental Methods
- 2.16.3 Geophysical Applications
- 2.16.4 Future Prospects
- References
- 2.17. Seismic Properties of Rocks and Minerals, and the Structure of Earth
- Abstract
- Acknowledgments
- 2.17.1 Introduction
- 2.17.2 Radial Structure
- 2.17.3 Lateral Heterogeneity
- 2.17.4 Anisotropy
- 2.17.5 Attenuation and Dispersion
- 2.17.6 Conclusions
- References
- 2.18. Constitutive Equations, Rheological Behavior, and Viscosity of Rocks
- Abstract
- Acknowledgments
- 2.18.1 Introduction
- 2.18.2 Role of Lattice Defects in Deformation
- 2.18.3 Mechanisms of Deformation and Constitutive Equations
- 2.18.4 Upper Mantle Viscosity
- 2.18.5 Concluding Remarks
- References
- 2.19. Properties of Rocks and Minerals – Diffusion, Viscosity, and Flow of Melts
- Abstract
- 2.19.1 Mass and Momentum Transport in Melts: Georelevance
- 2.19.2 Dynamics and Relaxation in Melts
- 2.19.3 Diffusion in Melts
- 2.19.4 Melt Rheology
- 2.19.5 Viscosity of Liquids
- 2.19.6 Concluding Statement
- References
- 2.20. Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective
- Abstract
- Acknowledgments
- 2.20.1 Introduction
- 2.20.2 Mineral Physics
- 2.20.3 Rock Physics
- 2.20.4 Conclusions
- References
- 2.21. Properties of Rocks and Minerals: Physical Origins of Anelasticity and Attenuation in Rock
- Abstract
- Nomenclature
- 2.21.1 Introduction
- 2.21.2 Theoretical Background
- 2.21.3 Insights from Laboratory Studies of Geologic Materials
- 2.21.4 Geophysical Implications
- 2.21.5 Summary and Outlook
- References
- 2.22. Properties of Rocks and Minerals, High-Pressure Melting
- Abstract
- 2.22.1 Melting Properties of Lower Mantle Components
- 2.22.2 Melting of (Mg,Fe)SiO3-PV
- 2.22.3 Melting of MgO
- 2.22.4 Partial Melting in the Lower Mantle
- 2.22.5 Shock-Wave Measurements
- 2.22.6 Iron at the Earth's Core Conditions
- References
- 2.23. Thermal Conductivity of the Earth
- Abstract
- Acknowledgments
- 2.23.1 Introduction
- 2.23.2 Theory of Heat Flow in Minerals and Rocks
- 2.23.3 Experimental Methods for the Lattice Contribution
- 2.23.4 The LFA Database on Lattice Transport for Geomaterials
- 2.23.5 Thermal Diffusivity of Magnesium Silicate Perovskite at Temperature and Pressure
- 2.23.6 Lattice Thermal Conductivity and Its Temperature Dependence
- 2.23.7 Conclusions
- References
- 2.24. Magnetic Properties of Rocks and Minerals
- Abstract
- 2.24.1 Introduction
- 2.24.2 Magnetism at the Atomic Length Scale
- 2.24.3 Magnetism at the Nanometer Length Scale
- 2.24.4 Magnetism at the Micrometer Length Scale
- 2.24.5 Magnetism at the Macroscopic Length Scale
- 2.24.6 Summary
- References
- 2.25. Properties of Rocks and Minerals – The Electrical Conductivity of Rocks, Minerals, and the Earth
- Abstract
- Nomenclature
- Acknowledgments
- 2.25.1 Introduction
- 2.25.2 Electrical Conductivity of Materials
- 2.25.3 High-Pressure Studies
- 2.25.4 Electrical Conductivity of Melts and Partial Melts
- 2.25.5 Mixing Relationships
- 2.25.6 Application to MT Studies
- 2.25.7 Summary
- References
- Glossary
- 2.01. Mineral Physics: An Introduction and Overview
- Volume 3: Geodesy
- 3.01. Geodesy: An Introduction and Overview
- Abstract
- 3.01.1 Introduction
- 3.01.2 Coordinate Systems
- 3.01.3 Geodetic Methods
- 3.01.4 Error Sources, Signals, and Noise
- 3.01.5 Conclusions
- References
- 3.02. Potential Theory and the Static Gravity Field of the Earth
- Abstract
- 3.02.1 Introduction
- 3.02.2 Newton's Law of Gravitation
- 3.02.3 Boundary-Value Problems
- 3.02.4 Solutions to the Spherical BVP
- 3.02.5 Low-Degree Harmonics: Interpretation and Reference
- 3.02.6 Methods of Determination
- 3.02.7 The Geoid and Heights
- References
- 3.03. Gravimetric Methods – Absolute and Relative Gravity Meter: Instruments Concepts and Implementation
- Abstract
- 3.03.1 Absolute and Relative Gravity Meters
- 3.03.2 Gravity Meters
- References
- 3.04. Superconducting Gravimetry
- Abstract
- Acknowledgments
- 3.04.1 The Superconducting Gravimeter
- 3.04.2 SG Data Analysis
- 3.04.3 Scientific Achievements Using SGs
- References
- 3.05. Gravimetric Methods – Satellite Altimeter Measurements
- Abstract
- Nomenclature
- 3.05.1 Introduction
- 3.05.2 Measuring Range
- 3.05.3 Satellite Orbit
- 3.05.4 Calibration and Validation
- 3.05.5 Applications to Geophysics
- 3.05.6 Conclusions and Future Prospects
- References
- Glossary
- 3.06. Earth Tides
- Abstract
- 3.06.1 Introduction
- 3.06.2 The Tidal Forces
- 3.06.3 Tidal Response of the Solid Earth
- 3.06.4 Tidal Loading
- 3.06.5 Analyzing and Predicting Earth Tides
- 3.06.6 Earth-Tide Instruments and Measurements
- References
- 3.07. Glacial Isostatic Adjustment and the Long-Wavelength Gravity Field
- Abstract
- 3.07.1 Introduction
- 3.07.2 J˙2: A Review of Early GIA Research
- 3.07.3 Assessment of the Long-Wavelength Gravity Trends
- 3.07.4 Degree-Two Trends in Gravity Revisited
- 3.07.5 The Influence of Lateral Variations in Mantle Viscosity
- 3.07.6 Summary
- References
- 3.08. Time-Variable Gravity from Satellites
- Abstract
- 3.08.1 Introduction
- 3.08.2 GRACE
- 3.08.3 Applications
- 3.08.4 The Future
- References
- 3.09. Earth Rotation Variations – Long Period
- Abstract
- Acknowledgments
- 3.09.1 Introduction
- 3.09.2 Theory of Earth Rotation Variations at Long Periods
- 3.09.3 Earth Rotation Measurement Techniques
- 3.09.4 Observed and Modeled Earth Rotation Variations
- 3.09.5 Mass Redistribution, Gravity, and Earth Rotation
- References
- 3.10. Earth Rotation Variations
- Abstract
- Nomenclature
- 3.10.1 Introduction–Concepts–Overview
- 3.10.2 Earth Orientation/Rotation Variables: Reference Frames
- 3.10.3 Equations of Rotational Motion
- 3.10.4 The Tidal Potential and Torque
- 3.10.5 Torque in Celestial Frame: Nutation–Precession in a Simple Model
- 3.10.6 Elliptical Motions: Prograde and Retrograde Circular Components
- 3.10.7 Kinematic Relations between the Nutation of the Figure Axis and the Wobble
- 3.10.8 Rigid Earth Nutation
- 3.10.9 Axially Symmetrical Ellipsoidal Nonrigid Earth: Torque Equations and Solutions
- 3.10.10 Nutation–Precession from the Displacement Field
- 3.10.11 Atmospheric Tides and Nontidal Effects from Surficial Fluids
- 3.10.12 New Conventions for Earth Rotation Variations
- A Annex 1
- B Annex 2
- References
- 3.11. GPS and Space-Based Geodetic Methods
- Abstract
- 3.11.1 The Development of Space Geodetic Methods
- 3.11.2 GPS and Basic Principles
- 3.11.3 Global and Regional Measurement of Geophysical Processes
- References
- 3.12. Interferometric Synthetic Aperture Radar Geodesy
- Abstract
- Acknowledgments
- 3.12.1 Introduction
- 3.12.2 InSAR
- 3.12.3 InSAR-Related Techniques
- 3.12.4 A Best-Practices Guide to Using InSAR and Related Observations
- 3.12.5 The Link Between Science and Mission Design
- Appendix A
- References
- 3.13. Geodetic Imaging Using Optical Systems
- Abstract
- 3.13.1 Introduction
- 3.13.2 Principles
- 3.13.3 Background Information on Optical Sensing Systems
- 3.13.4 Matching Techniques
- 3.13.5 Geometric Modeling and Processing of Passive Optical Images
- 3.13.6 Applications to Coseismic Deformation
- 3.13.7 Applications to Geomorphology and Glacier Monitoring
- 3.13.8 Conclusion
- References
- 3.01. Geodesy: An Introduction and Overview
- Volume 4: Earthquake Seismology
- 4.01. Earthquake Seismology: An Introduction and Overview
- Abstract
- 4.01.1 Introduction
- 4.01.2 Seismicity
- 4.01.3 The Earthquake Source
- 4.01.4 Slip Behavior
- 4.01.5 Physics of the Earthquake Source
- 4.01.6 State of Stress, Nucleation, and Triggering
- 4.01.7 Associated Problems
- 4.01.8 Earthquake Risk Mitigation
- 4.01.9 Conclusions
- References
- 4.02. Seismic Source Theory
- Abstract
- Acknowledgments
- 4.02.1 Introduction
- 4.02.2 Seismic Wave Radiation from a Point Force: The Green Function
- 4.02.3 Moment Tensor Sources
- 4.02.4 Finite Source Models
- 4.02.5 Crack Models of Seismic Sources
- 4.02.6 Conclusions
- References
- 4.03. Fracture and Frictional Mechanics: Theory
- Abstract
- Nomenclature
- Acknowledgments
- 4.03.1 Introduction
- 4.03.2 Linear Elastic Fracture Mechanics
- 4.03.3 The Governing Equations
- 4.03.4 Exact Solutions for Quasistatic Two-Dimensional Planar Cracks
- 4.03.5 Shear Cracks Governed by Rate-and-State Friction Laws
- 4.03.6 Dynamic Effects
- 4.03.7 Fracture Energy
- 4.03.8 Coupling between Elastodynamics and Shear Heating
- 4.03.9 Conclusions
- References
- 4.04. Applications of Rate- and State-Dependent Friction to Models of Fault-Slip and Earthquake Occurrence
- Abstract
- 4.04.1 Fault-Slip Phenomena
- 4.04.2 Rate- and State-Dependent Friction
- 4.04.3 Models of Sliding Phenomena
- 4.04.4 Earthquake Nucleation
- 4.04.5 Seismicity Rate Models
- 4.04.6 Stress Changes Estimated from Earthquake Rates
- 4.04.7 Conclusions and Future Directions
- References
- 4.05. The Mechanics of Frictional Healing and Slip Instability During the Seismic Cycle
- Abstract
- Acknowledgments
- 4.05.1 Introduction
- 4.05.2 Laboratory Experiments
- 4.05.3 Laboratory Data
- 4.05.4 Analysis and Discussion
- 4.05.5 Conclusions
- References
- 4.06. Mechanisms for Friction of Rock at Earthquake Slip Rates
- Abstract
- Nomenclature
- Acknowledgments
- 4.06.1 Introduction
- 4.06.2 Dynamic Fault-Weakening Mechanisms
- 4.06.3 Friction Resulting from High-Speed Weakening Mechanisms
- 4.06.4 Implications of Low Dynamic Friction for Earthquake Stress Drops and for Orientations and Magnitudes of Tectonic Stress
- 4.06.5 Conclusions
- References
- 4.07. The Role of Fault-Zone Drilling
- Abstract
- 4.07.1 Introduction: Why Drill to Study Earthquakes?
- 4.07.2 Fluids and Faulting
- 4.07.3 Frictional Strength of Faults
- 4.07.4 Near-Field Observations of Earthquake Nucleation and Propagation
- 4.07.5 Fault-Zone Drilling Projects
- 4.07.6 Summary
- References
- 4.08. Dynamic Shear Rupture in Frictional Interfaces: Speeds, Directionality, and Modes
- Abstract
- Acknowledgments
- 4.08.1 Introduction
- 4.08.2 Experimental Techniques for Creating Earthquakes in the Laboratory
- 4.08.3 Supershear and Sub-Rayleigh to Supershear Transition in Homogeneous Fault Systems
- 4.08.4 Directionality of Ruptures Along Faults Separating Weakly Dissimilar Materials: Supershear and Generalized Rayleigh Wave Speed Ruptures
- 4.08.5 Observing Crack-Like, Pulse-Like, Wrinkle-Like, and Mixed Rupture Modes in the Laboratory
- References
- 4.09. Slip Inversion
- Abstract
- Nomenclature
- Acknowledgments
- 4.09.1 Introduction
- 4.09.2 Construction of Slip Inversion Problem
- 4.09.3 Solving Inverse Problem
- 4.09.4 Example of Slip Model
- 4.09.5 Extended Studies Based on Slip Models
- 4.09.6 Discussion and Conclusion
- References
- 4.10. Fault Interaction, Earthquake Stress Changes, and the Evolution of Seismicity
- Acknowledgment
- 4.10.1 Introduction
- 4.10.2 Stress Interactions Between Faults in a Homogeneous Elastic Half-Space
- 4.10.3 Examples of Coulomb Interactions
- 4.10.4 Introducing Time into the Failure Criterion
- 4.10.5 Loading Models and Lithospheric Properties
- 4.10.6 Dynamic Triggering
- 4.10.7 Conclusions
- References
- 4.11. Dynamic Triggering
- Abstract
- Acknowledgments
- 4.11.1 Introduction
- 4.11.2 Early Inferences on Dynamic Triggering and Preinstrumental Examples
- 4.11.3 Instrumental Evidence for Dynamic Triggering
- 4.11.4 Triggered Response Characteristics
- 4.11.5 Proposed Models
- 4.11.6 Challenges for the Future
- 4.11.7 Conclusions
- References
- 4.12. Earthquake Hydrology
- Abstract
- Acknowledgments
- 4.12.1 Introduction
- 4.12.2 Hydrologic Response to Stress
- 4.12.3 Observations and Their Explanations
- 4.12.4 Feedback Between Earthquakes and Hydrology
- 4.12.5 Hydrologic Precursors
- 4.12.6 Concluding Remarks
- References
- 4.13. Deep Earthquakes
- Abstract
- 4.13.1 Introduction
- 4.13.2 Deep Earthquake Source Properties
- 4.13.3 Possible Mechanisms of Deep Earthquake Generation
- 4.13.4 Geophysical Setting of Subducting Slabs
- 4.13.5 Seismic Structures in Slabs
- 4.13.6 Implications for Seismogenesis
- 4.13.7 Concluding Thoughts
- References
- Relevant Websites
- 4.14. Volcanology 101
- Abstract
- Acknowledgment
- 4.14.1 Introduction to Volcanic Systems
- 4.14.2 Magma and Gas
- 4.14.3 Intrusions and Convection
- 4.14.4 Pressurization Within and Around Magma
- 4.14.5 Volcanic Unrest
- 4.14.6 Volcanic Eruptions
- 4.14.7 Construction and Erosion of Volcanoes
- 4.14.8 People and Volcanoes
- 4.14.9 Future Directions
- 4.14.10 Conclusion
- References
- Glossary
- 4.15. Volcano Seismology
- Abstract
- Acknowledgments
- 4.15.1 Introduction
- 4.15.2 Volcanic Seismic Signals
- 4.15.3 Description of Volcanic Seismic Sources
- 4.15.4 Physical Mechanisms for Volcanic Seismic Signals
- 4.15.5 Observation and Analysis Aspects
- 4.15.6 Models for Volcanic Seismic Signals
- 4.15.7 Other Volcano-Specific Issues
- 4.15.8 Concluding Remarks
- References
- 4.16. Interaction of Solid Earth, Atmosphere, and Ionosphere
- Abstract
- Nomenclature
- 4.16.1 Introduction
- 4.16.2 Seismic Noise
- 4.16.3 Localized Sources of Interactions
- 4.16.4 Conclusion
- References
- 4.17. Episodic Aseismic Slip at Plate Boundaries
- Abstract
- Acknowledgments
- 4.17.1 Seismic and Aseismic Slip at Plate Boundaries
- 4.17.2 Modes of EAS
- 4.17.3 EAS and Seismic Tremor
- 4.17.4 Global Observations of EAS
- 4.17.5 EAS and Seismicity
- 4.17.6 Mechanics of EAS
- 4.17.7 Recurrence of EAS
- 4.17.8 Conclusions
- References
- 4.18. Global Seismicity: Results from Systematic Waveform Analyses, 1976–2012
- Abstract
- Acknowledgments
- 4.18.1 Introduction
- 4.18.2 The CMT Method
- 4.18.3 Aspects of Global Seismicity
- 4.18.4 Recent Discoveries and Future Directions
- References
- 4.19. Tsunamis
- Abstract
- 4.19.1 Introduction
- 4.19.2 Recent Devastating Tsunamis
- 4.19.3 Other Examples
- 4.19.4 Tsunami Observations
- 4.19.5 Tsunami Generation
- 4.19.6 Tsunami Propagation
- 4.19.7 Tsunami Warning Systems
- 4.19.8 Tsunami Hazard Assessments
- 4.19.9 Summary
- References
- 4.20. Physical Processes That Control Strong Ground Motion
- Abstract
- Acknowledgments
- 4.20.1 Introduction
- 4.20.2 What Is Strong Ground Motion?
- 4.20.3 Representation Theorem
- 4.20.4 Green's Functions
- 4.20.5 Source Parameters
- 4.20.6 The Effects of Fault Finiteness
- 4.20.7 Effects of Surface Geology
- 4.20.8 Predicting Strong Ground Motions
- 4.20.9 Conclusions
- Appendix Sources of Strong-Motion Data, 2012
- References
- 4.21. Paleoseismology
- Abstract
- Acknowledgments
- 4.21.1 Introduction
- 4.21.2 Methods
- 4.21.3 Models and Interpretation of Data
- References
- 4.22. Historical Seismicity: Archaeoseismology
- Abstract
- 4.22.1 Overview
- 4.22.2 Earthquake Traces in Archaeological Sites
- 4.22.3 Techniques in Archaeoseismology
- 4.22.4 Mutual Benefits of Archaeoseismology
- References
- 4.23. Earthquake Hazard Mitigation: New Directions and Opportunities
- Abstract
- Acknowledgments
- 4.23.1 Introduction
- 4.23.2 Recognizing and Quantifying the Problem
- 4.23.3 The ‘Holy Grail’ of Seismology: Earthquake Prediction
- 4.23.4 Long-Term Mitigation: Earthquake-Resistant Buildings
- 4.23.5 Short-Term Mitigation: Real-Time Earthquake Information
- 4.23.6 Conclusion
- References
- 4.24. Complexity and Earthquakes
- Abstract
- Nomenclature
- Acknowledgments
- 4.24.1 Introduction
- 4.24.2 Relevant Observations
- 4.24.3 Self-Organizing Complex Systems
- 4.24.4 Relevant Models
- 4.24.5 Discussion
- References
- Glossary
- 4.01. Earthquake Seismology: An Introduction and Overview
- Volume 5: Geomagnetism
- 5.01. Geomagnetism: An Introduction and Overview
- Abstract
- Acknowledgments
- 5.01.1 Geomagnetism in Perspective
- 5.01.1.8 Conclusions
- References
- 5.02. The Present and Future Geomagnetic Field
- Abstract
- Acknowledgments
- 5.02.1 Introduction
- 5.02.2 Magnetic Field Data Used in Modeling
- 5.02.3 Global Models of the Earth's Magnetic Field
- 5.02.4 The Present Main Field
- 5.02.5 Predicting the Future Main Field
- References
- 5.03. Magnetospheric Contributions to the Terrestrial Magnetic Field
- Abstract
- 5.03.1 Introduction
- 5.03.2 Geophysical Plasmas
- 5.03.3 Plasma Dynamics
- 5.03.4 Low- and Midlatitude Currents
- 5.03.5 High-Latitude Currents
- 5.03.6 Geomagnetic Pulsations
- 5.03.7 Conclusions
- References
- 5.04. Observation and Measurement Techniques
- Abstract
- 5.04.1 Introduction
- 5.04.2 Instrumentation
- 5.04.3 Magnetic Observatories
- 5.04.4 Magnetic Surveys for Geological Exploration
- 5.04.5 Paleomagnetic Methods
- References
- Relevant Websites
- 5.05. Geomagnetic Secular Variation and Its Applications to the Core
- Abstract
- Acknowledgments
- 5.05.1 Introduction
- 5.05.2 Data
- 5.05.3 Time-Dependent Models of the Main Field
- 5.05.4 Historical Field Evolution: Long-Term Secular Variation
- 5.05.5 Interpretation in Terms of Core Processes
- 5.05.6 Summary
- References
- 5.06. Crustal Magnetism
- Abstract
- Nomenclature
- Acknowledgments
- 5.06.1 Introduction
- 5.06.2 Magnetic Petrology
- 5.06.3 Continental and Oceanic Magnetic Anomalies
- 5.06.4 Compilations and Models
- 5.06.5 The ‘Tools of the Trade’
- 5.06.6 Spectral Overlap with Other Fields
- 5.06.7 Separation of Induced and Remanent Magnetizations
- References
- Relevant Websites
- Glossary
- 5.07. Geomagnetic Induction Studies
- Abstract
- Acknowledgment
- 5.07.1 Geomagnetic Induction Studies
- 5.07.2 Geomagnetic Sounding
- 5.07.3 Interpretation of GDS and MT Data
- 5.07.4 Electric Conductivity of Earth Materials
- 5.07.5 Global Conductivity Structure
- 5.07.6 Conclusions
- References
- 5.08. Magnetizations in Rocks and Minerals
- Abstract
- 5.08.1 Introduction
- 5.08.2 Domains and the Magnetization Process
- 5.08.3 Magnetic Minerals and Their Properties
- 5.08.4 Induced and Remanent Magnetization
- 5.08.5 NRM and Paleomagnetic Stability
- 5.08.6 Remanent Magnetization Processes in Nature
- 5.08.7 Summary
- Appendix A Developments in Rock and Mineral Magnetism 2006–12
- A.1 Domains and the Magnetization Process
- A.2 Magnetic Minerals and Their Properties
- A.3 Induced and Remanent Magnetization
- A.4 NRM and Paleomagnetic Stability
- A.5 Remanent Magnetization Processes in Nature
- References
- Further-reading
- 5.09. Centennial- to Millennial-Scale Geomagnetic Field Variations
- Abstract
- Acknowledgments
- 5.09.1 Introduction
- 5.09.2 Data Types and Methods
- 5.09.3 Local and Regional Secular Variation Studies
- 5.09.4 Global Data Compilations: Geographic and Temporal Sampling
- 5.09.5 Global Geomagnetic Field Reconstructions
- 5.09.6 The Average Field and Its Secular Variation on Millennial Timescales
- 5.09.7 The Geomagnetic Spectrum
- 5.09.8 Applications
- 5.09.9 Outstanding Problems and Scope for Future Progress
- Appendix: Electronic Links
- References
- 5.10. Geomagnetic Excursions
- Abstract
- Acknowledgments
- 5.10.1 Introduction
- 5.10.2 Geomagnetic Excursions in the Brunhes Chron
- 5.10.3 Geomagnetic Excursions in the Matuyama Chron
- 5.10.4 Geomagnetic Excursions in Pre-Matuyama Time
- 5.10.5 Duration of Geomagnetic Excursions
- 5.10.6 Excursional Field Geometry
- 5.10.7 Concluding Remarks
- References
- 5.11. The Time-Averaged Field and Paleosecular Variation
- Abstract
- Acknowledgments
- 5.11.1 Introduction
- 5.11.2 Essential Concepts
- 5.11.3 Data Sets
- 5.11.4 Paleosecular Variation
- 5.11.5 The Time-Averaged Field
- 5.11.6 Discussion
- 5.11.7 Future Directions
- 5.11.8 Concluding Remarks
- References
- 5.12. Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale
- Abstract
- Acknowledgments
- 5.12.1 Introduction
- 5.12.2 Magnetic Anomalies as Records of Geomagnetic Field Behavior
- 5.12.3 Magnetic Source Regions
- 5.12.4 Crustal Accretion and Structure of the Magnetic Source
- 5.12.5 Future Directions
- References
- Relevant Websites
- 5.13. Paleointensities
- Abstract
- Acknowledgments
- 5.13.1 Introduction
- 5.13.2 Theory of Paleointensity
- 5.13.3 Paleointensity with Thermal Remanence
- 5.13.4 Paleointensity with Depositional Remanences
- 5.13.5 Remagnetization
- 5.13.6 Evaluating Paleointensity Data
- 5.13.7 Current State of the Paleointensity Data
- 5.13.8 Discussion
- 5.13.9 Conclusions
- References
- 5.14. True Polar Wander: Linking Deep and Shallow Geodynamics to Hydro- and Biospheric Hypotheses
- Abstract
- Acknowledgments
- 5.14.1 Planetary Moment of Inertia and the Spin Axis
- 5.14.2 Apparent Polar Wander (APW) = Plate Motion + TPW
- 5.14.3 Geodynamic and Geologic Effects and Inferences
- 5.14.4 Critical Testing of Cryogenian–Cambrian TPW
- 5.14.5 Summary: Major Unresolved Issues and Future Work
- References
- 5.01. Geomagnetism: An Introduction and Overview
- Volume 6: Crustal and Lithosphere Dynamics
- 6.01. Crustal and Lithosphere Dynamics: An Introduction and Overview
- Abstract
- Acknowledgments
- 6.01.1 Introduction
- 6.01.2 Isostasy and ‘Steady-State’ Equilibrium
- 6.01.3 The Deformation of the Crust and Lithosphere
- 6.01.4 Relationship Between Load and Plate Age and Rheological Structure
- 6.01.5 Global Elastic Thickness
- 6.01.6 Geologic Implications
- 6.01.7 Conclusions
- References
- 6.02. Plate Tectonics
- Abstract
- Abbreviations
- Acknowledgments
- 6.02.1 Introduction
- 6.02.2 Studies of Relative Plate Motions
- 6.02.3 Intraplate Volcanism
- 6.02.4 Studies of APMs
- 6.02.5 Driving Forces of Plate Tectonics
- 6.02.6 Future Challenges
- References
- Glossary
- 6.03. Plate Rheology and Mechanics
- Abstract
- Acknowledgments
- 6.03.1 Introduction: Plate Rheology and Mechanics
- 6.03.2 Rock Mechanics Data and Conventional Rheology Models
- 6.03.3 Constitutive Models
- 6.03.4 Uncertainties in the Experimental Rheology Laws
- 6.03.5 Rheology and Structure of the Oceanic Lithosphere
- 6.03.6 Rheology and Structure of the Continental Lithosphere and Continental Margins
- 6.03.7 Relations Between Short-Term and Long-Term Properties
- 6.03.8 Conclusions and Future Perspectives
- Appendix A Flexure of Continental Lithosphere with Multilayered Nonlinear Rheology
- Appendix B Thermal Model of the Lithosphere
- References
- 6.04. Plate Deformation
- Abstract
- 6.04.1 Introduction
- 6.04.2 Postglacial Rebound
- 6.04.3 Continental Plates
- 6.04.4 Plate Deformation at Subduction Zones
- 6.04.5 Coseismic and Postseismic Deformations
- 6.04.6 Interseismic and Preseismic Deformation
- 6.04.7 The 2004 Sumatra and 2011 Giant Tohoku-Oki Earthquakes
- 6.04.8 Conclusions
- References
- 6.05. Heat Flow and Thermal Structure of the Lithosphere
- Abstract
- Acknowledgments
- 6.05.1 Introduction
- 6.05.2 Surface Heat Flux and Heat Transport in the Earth
- 6.05.3 Oceanic Heat Flux, Topography, and Cooling Models
- 6.05.4 Continental Lithosphere in Steady State
- 6.05.5 Continental Lithosphere in Transient Thermal Conditions
- 6.05.6 Thermal Control on Lithospheric Thickness
- 6.05.7 Other Geophysical Constraints on the Thermal Regime of the Continental Lithosphere
- 6.05.8 Conclusions
- Appendix A Measurement Techniques
- Appendix B Corrections
- Appendix C Climatic Effects
- Appendix D Physical Properties
- References
- 6.06. Lithosphere Stress and Deformation
- Abstract
- 6.06.1 Introduction
- 6.06.2 Global Patterns of Tectonic Stress
- 6.06.3 Sources of the Lithospheric Stress Field
- 6.06.4 Absolute Stress Magnitudes and the Critically Stressed Crust
- 6.06.5 Stress Field Constraints on Lithospheric Deformation
- 6.06.6 Concluding Remarks
- Appendix A Indicators of Contemporary Stress
- A.1 Earthquake Focal Mechanisms
- A.2 Geologic Stress Indicators
- A.3 In Situ Stress Measurements
- References
- Relevant Websites
- 6.07. Magmatism, Magma, and Magma Chambers
- Abstract
- Acknowledgments
- 6.07.1 Introduction
- 6.07.2 The Nature of Magma
- 6.07.3 Crystals in Magma
- 6.07.4 Magma Chambers
- 6.07.5 Historical Setting
- 6.07.6 Initial Conditions of Magmatic Systems
- 6.07.7 End-Member Magmatic Systems
- 6.07.8 Lessons Learned from Sudbury and the Ferrar Dolerites
- 6.07.9 Ocean Ridge Magmatism
- 6.07.10 Island Arc Magmatism
- 6.07.11 Solidification Front Differentiation Processes
- 6.07.12 Magmatic Systems
- References
- 6.08. The Dynamics of Continental Breakup and Extension
- Abstract
- 6.08.1 Introduction
- 6.08.2 Processes Affecting the Dynamics of Continental Extension
- 6.08.3 High-Angle Versus Low-Angle Normal Faults
- 6.08.4 Core Complex Formation: Constraints and Models
- 6.08.5 Pure Versus Simple Shear Rifting
- 6.08.6 Wide Versus Narrow Rifts
- 6.08.7 Hyperextended Margins
- 6.08.8 Rifting an Active Margin
- 6.08.9 Small-Scale Convection and Rifting
- 6.08.10 Dikes Versus Stretching to Initiate Rifting
- 6.08.11 Conclusions and Future Work
- References
- 6.09. Mountain Building: From Earthquakes to Geologic Deformation
- Acknowledgments
- 6.09.1 Introduction
- 6.09.2 Geodynamic Setting of the Himalayas
- 6.09.3 Holocene Deformation and Erosion
- 6.09.4 Longer-Term Geologic Deformation and Exhumation
- 6.09.5 Kinematic and Mechanical Models of Crustal Deformation
- 6.09.6 Geodetic Deformation and the Seismic Cycle
- 6.09.7 Discussion
- 6.09.8 Conclusions
- References
- 6.10. Fault Mechanics
- Abstract
- 6.10.1 Introduction
- 6.10.2 Elementary Fault Theory
- 6.10.3 Fracture Mechanics of Faults
- 6.10.4 Fault Interactions
- 6.10.5 Fault Populations
- 6.10.6 Strain and Faulting
- 6.10.7 Fault Rocks and Structures
- 6.10.8 The Strength of Faults
- References
- 6.11. Mountain Building, Tectonic Evolution, Rheology, and Crustal Flow in the Himalaya, Karakoram, and Tibet
- Abstract
- Acknowledgments
- 6.11.1 Introduction
- 6.11.2 Lithospheric Structure and Rheology
- 6.11.3 Deep Structure of the Himalaya and Tibet
- 6.11.4 Tectonic Evolution of the Himalaya
- 6.11.5 Tectonic Evolution of Tibet
- 6.11.6 Tectonic Evolution of the Karakoram
- 6.11.7 Discussion: Lithospheric Models
- 6.11.8 Conclusions
- References
- 6.12. Tectonic Models for the Evolution of Sedimentary Basins
- Abstract
- Acknowledgments
- 6.12.1 Introduction
- 6.12.2 Rheological Controls on Basin Evolution
- 6.12.3 Extensional Basin Systems
- 6.12.4 Compressional Basin Systems
- 6.12.5 General Conclusions and Future Perspectives
- References
- 6.13. Landscape Evolution
- Abstract
- Acknowledgments
- 6.13.1 Introduction
- 6.13.2 Global Overview
- 6.13.3 Major Controls on Continental Denudation
- 6.13.4 Process Mechanics and Landscape Evolution Theory
- 6.13.5 Feedbacks Between Erosion, Climate, and Tectonics
- 6.13.6 Tectonics from Topography
- 6.13.7 Summary, Retrospect, and Prospect
- References
- 6.01. Crustal and Lithosphere Dynamics: An Introduction and Overview
- Volume 7: Mantle Dynamics
- 7.01. Mantle Dynamics: An Introduction and Overview
- Abstract
- Acknowledgments
- 7.01.1 Introduction
- 7.01.2 A Historical Perspective on Mantle Dynamics
- 7.01.3 Observations and Evidence for Mantle Convection
- 7.01.4 Mantle Properties
- 7.01.5 Questions About Mantle Convection We Have Probably Answered
- 7.01.6 Major Unsolved Issues in Mantle Dynamics
- 7.01.7 Burgeoning and Future Problems in Mantle Dynamics
- 7.01.8 Summary and Context of the Rest of This Volume
- References
- 7.02. Physics of Mantle Convection
- Abstract
- Acknowledgment
- 7.02.1 Introduction
- 7.02.2 Conservation Equations
- 7.02.3 Thermodynamic and Rheological Properties
- 7.02.4 Physics of Convection
- 7.02.5 Introduction to Physics of Multicomponent and Multiphase Flows
- 7.02.6 Specifics of Earth's Mantle Convection
- References
- 7.03. Laboratory Studies of Mantle Convection
- Abstract
- Acknowledgments
- 7.03.1 Introduction
- 7.03.2 Experimental Setups and Fluids
- 7.03.3 Measurements and Visualization Techniques
- 7.03.4 Rayleigh–Taylor Instabilities
- 7.03.5 Simple Rayleigh–Bénard Convection Studies
- 7.03.6 Temperature-Dependent Viscosity
- 7.03.7 Complications: Internal Heating, Continents, and Moving Plates
- 7.03.8 Close-Up on Plumes: Plumes from a Point Source of Buoyancy
- 7.03.9 Inhomogeneous Fluids: Mixing and Thermochemical Convection
- 7.03.10 Mid-Ocean Ridges and Wax Tectonics
- 7.03.11 Subduction-Related Experiments
- 7.03.12 Conclusions
- References
- 7.04. Analytical Approaches to Mantle Dynamics
- Abstract
- Acknowledgments
- 7.04.1 Introduction
- 7.04.2 Formulating Geodynamical Model Problems: Three Case Studies
- 7.04.3 Dimensional and Scaling Analysis
- 7.04.4 Self-Similarity and Intermediate Asymptotics
- 7.04.5 Slow Viscous Flow
- 7.04.6 Elasticity and Viscoelasticity
- 7.04.7 Boundary-Layer Theory
- 7.04.8 Long-Wave Theories
- 7.04.9 Hydrodynamic Stability and Thermal Convection
- References
- 7.05. Numerical Methods for Mantle Convection
- Abstract
- 7.05.1 Introduction
- 7.05.2 Governing Equations and Initial and Boundary Conditions
- 7.05.3 FD, FV, and Spectral Methods
- 7.05.4 An FE Method
- 7.05.5 Incorporating More Realistic Physics
- 7.05.6 Advanced Numerical Techniques
- 7.05.7 Concluding Remarks and Future Prospect
- References
- 7.06. Temperatures, Heat, and Energy in the Mantle of the Earth
- Abstract
- Acknowledgments
- 7.06.1 Introduction
- 7.06.2 Basic Thermodynamics
- 7.06.3 Heat Loss Through the Seafloor
- 7.06.4 Heat Loss Through Continents
- 7.06.5 Heat Sources
- 7.06.6 Secular Cooling: Constraints on Mantle Temperatures
- 7.06.7 Thermal Evolution Models
- 7.06.8 Conclusions
- Appendix A Contraction of the Earth due to Secular Cooling
- Appendix B Gravitational Energy Changes
- Appendix C Viscous Dissipation
- Appendix D Half-Space Cooling Model with Temperature-Dependent Properties
- Appendix E Plate Models for the Oceanic Lithosphere
- Appendix F Differences Between Estimates of the Energy Budget
- Appendix G Average Thermal Structure and Temperature Changes in Upwellings and Downwellings
- Appendix H Seafloor Age Distribution as Seen from Models of Mantle Convection
- References
- 7.07. The Generation of Plate Tectonics from Mantle Dynamics
- Abstract
- 7.07.1 Introduction
- 7.07.2 Plate Tectonics
- 7.07.3 Basic Convection
- 7.07.4 Where Does Basic Convection Theory Succeed in Explaining Plate Tectonics?
- 7.07.5 Where Does Basic Convection Theory Fail in Explaining Plate Tectonics?
- 7.07.6 Plate Generation Physics
- 7.07.7 Plate Generation on Earth and Other Planets
- 7.07.8 Closing and Future Directions
- References
- 7.08. The Dynamics and Convective Evolution of the Upper Mantle
- Abstract
- 7.08.1 Introduction
- 7.08.2 Cooling the Mantle from Above
- 7.08.3 Convective Instability and Melting in the Upper Mantle
- 7.08.4 Upwelling and Melting Beneath Oceanic Spreading Centers
- 7.08.5 Summary
- References
- 7.09. Dynamics of Subducting Slabs: Numerical Modeling and Constraints from Seismology, Geoid, Topography, Geochemistry, and Petrology
- Abstract
- Acknowledgments
- 7.09.1 Introduction
- 7.09.2 Observations on Slab Dynamics
- 7.09.3 Kinematic Models for Slab Thermal Structure
- 7.09.4 Coupled Kinematic–Dynamic Slab–Wedge Models
- 7.09.5 Dynamic Subduction Models
- 7.09.6 Instantaneous Mantle Flow Models: Geoid and Plate Motion
- 7.09.7 Concluding Remarks
- References
- 7.10. Hotspots, Large Igneous Provinces, and Melting Anomalies
- Abstract
- Acknowledgments
- 7.10.1 Introduction
- 7.10.2 Characteristics
- 7.10.3 Dynamic Mechanisms and Their Implications
- 7.10.4 Conclusion
- References
- 7.11. The Core–Mantle Boundary Region
- Abstract
- Acknowledgments
- 7.11.1 Introduction
- 7.11.2 Overview of the CMB Region
- 7.11.3 D″ Discontinuities
- 7.11.4 Large Low-Shear-Wave-Velocity Provinces (LLSVPs)
- 7.11.5 Ultralow-Velocity Zones (ULVZs)
- 7.11.6 Outermost Core Stratification
- 7.11.7 Core–Mantle Heat Exchange
- 7.11.8 Core–Mantle Mass Exchange
- 7.11.9 Concluding Remarks
- References
- 7.12. Mantle Geochemical Geodynamics
- Abstract
- Acknowledgments
- 7.12.1 Observations and the Origin of Heterogeneity
- 7.12.2 Mantle Stirring and Mixing of Passive Heterogeneities
- 7.12.3 Mantle Convection with Active (Buoyant) Chemical Heterogeneity
- 7.12.4 Convection Models Tracking Trace-Element Evolution
- 7.12.5 New Concepts and Future Outlook
- References
- 7.01. Mantle Dynamics: An Introduction and Overview
- Volume 8: Core Dynamics
- 8.01. Core Dynamics: An Introduction and Overview
- Abstract
- 8.01.1 Introduction
- 8.01.2 The Scientific Journey to the Center of the Earth
- 8.01.3 State of the Core
- 8.01.4 The Search for a Dynamo Theory
- 8.01.5 Core Dynamics and the Geomagnetic Field
- 8.01.6 Core Energetics
- 8.01.7 Core Dynamics as a Heat Engine
- 8.01.8 Convection and Dynamo Action
- 8.01.9 Simulating the Geodynamo
- 8.01.10 Mantle Effects Within the Core
- 8.01.11 The Dynamical Inner Core
- 8.01.12 Future Prospects and Problems
- 8.01.13 Additional References
- 8.01.14 Summary of the Chapters in This Volume
- References
- 8.02. Energetics of the Core
- Abstract
- Abbreviations
- Acknowledgments
- 8.02.1 Introduction
- 8.02.2 Core Structure and Magnetic Field Evolution
- 8.02.3 Energy and Entropy Equations
- 8.02.4 Present-Day Energy Budget
- 8.02.5 Evolution of Energy Budget through Time
- 8.02.6 Summary and Conclusions
- References
- 8.03. Theory of the Geodynamo
- Abstract
- 8.03.1 Introduction
- 8.03.2 Basic Electrodynamics
- 8.03.3 Kinematic Dynamos
- 8.03.4 Laminar Dynamos
- 8.03.5 Turbulent Kinematic Dynamos
- 8.03.6 MHD Dynamos
- 8.03.7 Final Remarks
- References
- 8.04. Large-Scale Flow in the Core
- Abstract
- 8.04.1 Introduction
- 8.04.2 Surface Core Flow from Observed Secular Variation
- 8.04.3 Higher-Resolution Flows from Detailed Models of SV from Satellite Observations
- 8.04.4 Angular Momentum–LOD Variation and Correlation with Core-Angular Momentum
- 8.04.5 Torsional Oscillations as a Probe of Core Structure
- 8.04.6 Wave Motion as an Explanation for Secular Variation
- 8.04.7 Polar Vortices
- 8.04.8 Modeled Core-Surface Flow and the Dynamics of the Core
- 8.04.9 Conclusions
- References
- 8.05. Thermal and Compositional Convection in the Outer Core
- Abstract
- 8.05.1 Introduction to Core Convection
- 8.05.2 Equations Governing Convection
- 8.05.3 Convection in the Absence of Rotation and Magnetic Field
- 8.05.4 Effect of Rotation on Convection
- 8.05.5 Convection With and Without Rotation in the Presence of Magnetic Field
- 8.05.6 Heterogeneous Boundary Conditions and Stable Layers near the CMB
- 8.05.7 Conclusions and Future Developments
- Appendix
- References
- 8.06. Turbulence in the Core
- Abstract
- Acknowledgments
- 8.06.1 Introduction
- 8.06.2 Fundamentals of Turbulence
- 8.06.3 Tools for Turbulence
- 8.06.4 Parameterization of Turbulence
- 8.06.5 Equations, Timescales, and Length Scales
- 8.06.6 Turbulent Regimes for the Core
- 8.06.7 Summary and Perspectives
- References
- 8.07. Rotational Dynamics of the Core
- Abstract
- Nomenclature
- 8.07.1 Introduction
- 8.07.2 Inertial Oscillations in Spherical Shells
- 8.07.3 Precession
- 8.07.4 Tides
- 8.07.5 Interaction with Buoyancy and Magnetic Fields
- 8.07.6 Summary and Outlook
- References
- 8.08. Core–Mantle Interactions
- Abstract
- 8.08.1 Introduction
- 8.08.2 Thermal Interactions
- 8.08.3 Electromagnetic Interactions
- 8.08.4 Mechanical Interactions
- 8.08.5 Chemical Interactions
- 8.08.6 Conclusions
- References
- 8.09. Waves in the Core and Mechanical Core–Mantle Interactions
- Abstract
- 8.09.1 Motivation
- 8.09.2 Competing Constraints from Rotation and Magnetic Fields
- 8.09.3 Torsional Waves
- 8.09.4 Mechanical Core–Mantle Interactions
- 8.09.5 Future Directions – Consistent Approach to the Earth's Core Dynamics
- 8.09.6 Final Remarks
- References
- 8.10. Numerical Dynamo Simulations
- Abstract
- 8.10.1 Introduction
- 8.10.2 Basic Formulation of the Magnetohydrodynamic Dynamo Problem
- 8.10.3 Numerical Approaches
- 8.10.4 Model Results
- 8.10.5 Perspectives
- References
- 8.11. Magnetic Polarity Reversals in the Core
- Abstract
- 8.11.1 Introduction
- 8.11.2 Observations
- 8.11.3 Models
- 8.11.4 Conclusions
- References
- 8.12. Inner Core Dynamics
- Abstract
- 8.12.1 Introduction
- 8.12.2 Core Composition and Phase Diagram, Crystal Structure, and Thermal Conductivity of Iron
- 8.12.3 Solidification of the Inner Core
- 8.12.4 Grain Size and Rheology in the Inner Core
- 8.12.5 Origin of Inner Core Elastic Anisotropy
- 8.12.6 Origin of Other Inner Core Seismic Structures
- 8.12.7 Inner Core Rotation
- 8.12.8 Summary
- References
- 8.13. Experiments on Core Dynamics
- Abstract
- Acknowledgments
- 8.13.1 Introduction
- 8.13.2 Rotational Dynamics
- 8.13.3 Thermal Convection in a Rapidly Rotating Spherical Shell
- 8.13.4 Magnetohydrodynamics
- 8.13.5 Experimental Dynamos
- References
- 8.01. Core Dynamics: An Introduction and Overview
- Volume 9: Evolution of the Earth
- 9.01. Evolution of the Earth: An Introduction and Overview
- Abstract
- 9.01.1 Introduction
- 9.01.2 Physical and Chemical Constraints
- 9.01.3 Commentary on Formation Models
- 9.01.4 Commentary on Early Evolution Models
- 9.01.5 Outstanding Questions
- References
- 9.02. The Composition and Major Reservoirs of the Earth Around the Time of the Moon-Forming Giant Impact
- Abstract
- Acknowledgments
- 9.02.1 Introduction
- 9.02.2 Key Features of the Earth and Moon
- 9.02.3 The Birth of the Solar System
- 9.02.4 Meteorites
- 9.02.5 Meteorites and the Composition of the Earth and Its Primary Reservoirs
- 9.02.6 The Circumstellar Disk and the Composition of the Earth
- 9.02.7 Dynamics of Planet Formation
- 9.02.8 The Age of the Earth
- 9.02.9 Short-Lived Nuclides and Early Processes
- 9.02.10 Rates of the Earth's Accretion and Differentiation
- 9.02.11 The Age of the Moon
- 9.02.12 First Principles of Chemical Constraints on Core Formation
- 9.02.13 Explanations for the ‘Excess Siderophile Problem’
- 9.02.14 The ‘Deep Magma Ocean’ Model of Core Formation
- 9.02.15 Core Segregation During the Growth of the Earth
- 9.02.16 Oxidation State of the Earth During and After Accretion
- 9.02.17 Isotopic Evidence for Impact-Induced Losses During the Earth's Accretion
- 9.02.18 Hidden Reservoirs and the Composition of the Earth
- 9.02.19 Concluding Overview
- References
- 9.03. Formation of the Earth's Core
- Abstract
- Acknowledgments
- 9.03.1 Core Formation in the Earth and Terrestrial Planets
- 9.03.2 Physics of Core Formation
- 9.03.3 Observational and Experimental Constraints
- 9.03.4 Summary
- References
- 9.04. Magma Oceans and Primordial Mantle Differentiation
- Abstract
- Nomenclature
- 9.04.1 Earth Accretion and the Giant Impact Hypothesis
- 9.04.2 Geochemical Evidence for Magma Ocean
- 9.04.3 Thermal Structure of a Convecting Magma Ocean
- 9.04.4 Viscosity of the Magma Ocean
- 9.04.5 Convection in the Magma Ocean
- 9.04.6 Fractional Versus Equilibrium Crystallization
- 9.04.7 Crystal Size in the Magma Ocean
- 9.04.8 Crystallization Beyond the Rheological Transition
- 9.04.9 The Last Stages of Crystallization
- 9.04.10 Magma Oceans on Other Planets
- 9.04.11 Summary
- References
- 9.05. Water in the Evolution of the Earth and Other Terrestrial Planets
- Abstract
- Acknowledgment
- 9.05.1 Introduction
- 9.05.2 Equilibrium and Transport Properties (Processes) Relevant to Volatile Distribution
- 9.05.3 Influence of Water on Physical and Chemical Properties
- 9.05.4 Distribution of Volatile Elements on Earth
- 9.05.5 Volatiles During Planetary Formation
- 9.05.6 Evolution of the Ocean and the Atmosphere
- 9.05.7 Origin of Volatiles on Earth and Other Terrestrial Planets
- 9.05.8 Summary and Outlook
- References
- 9.06. Evolution of the Earth: Plate Tectonics Through Time
- Abstract
- Acknowledgments
- 9.06.1 Introduction
- 9.06.2 Physical Preliminaries
- 9.06.3 Aftermath of the Moon-Forming Impact
- 9.06.4 Dawn of Plate Tectonics
- 9.06.5 The Rate of Plate Tectonics over Time
- 9.06.6 Death of Plate Tectonics
- 9.06.7 Biological Implications
- 9.06.8 Conclusions and Musings
- Appendix A Thermal Models
- Appendix B Convection Beneath Free-Slip Lid
- References
- 9.07. Mechanism of Continental Crustal Growth
- Abstract
- 9.07.1 Introduction
- 9.07.2 Structure and Chemical Composition of the Continental Crust
- 9.07.3 Models of Crustal Formation and Continental Growth
- 9.07.4 Oceanic Plateau, Accreted Terrains and Juvenile Crust Additions
- 9.07.5 The Production of Calc-Alkaline and Alkaline Granites and Related Rocks
- 9.07.6 Rapid Growth of Major Continental Segments (the ‘Major Orogens’)
- 9.07.7 Summary
- References
- 9.08. Thermal and Compositional Evolution of the Core
- Abstract
- Acknowledgments
- 9.08.1 Introduction
- 9.08.2 Present-Day State of the Core
- 9.08.3 Evolution of the Core
- 9.08.4 Conclusions
- References
- 9.09. The History of the Earth's Rotation: Impacts of Deep Earth Physics and Surface Climate Variability
- Abstract
- 9.09.1 Polar Motion and Length-of-Day Variations Through (Geologic) Time
- 9.09.2 Theoretical and Observational Background I: Angular Momentum Conservation on Subannual to Interannual Timescales
- 9.09.3 Theoretical Background II: The Viscoelastic Rotational Response to the Late Pleistocene Ice-Age Cycle
- 9.09.4 Observations of Millennial Scale Secular Variations in the Earth's Rotation Anomalies and the Impact of the Global Warming Era upon Them
- 9.09.5 Earth's Rotational Response to the Cyclic Glaciation Cycle of Late Pleistocene Time: Data–Model Comparisons
- 9.09.6 Grace Satellite Inferences of Geoid Height Time Dependence: The Combined Influences of Ice Age and Modern Land-Ice Melting
- 9.09.7 The Impact of Variations in the Geometry of the Earth's Orbit Around the Sun upon Climate System Evolution
- 9.09.8 The Earth's Rotation Variations, Mantle Convective Mixing, and Plate Tectonics-Related Processes
- References
- 9.10. Coevolution of Life and Earth
- Abstract
- Acknowledgments
- 9.10.1 Introduction
- 9.10.2 Barren Worlds as Null Hypotheses
- 9.10.3 Biosignatures of Earth
- 9.10.4 Origin of Life on Earth
- 9.10.5 Coevolutionary Histories
- 9.10.6 Conclusions
- References
- 9.01. Evolution of the Earth: An Introduction and Overview
- Volume 10: Physics of Terrestrial Planets and Moons
- 10.01. Physics of Terrestrial Planets and Moons: An Introduction and Overview
- Abstract
- 10.01.1 Introduction
- 10.01.2 Our Planetary System
- 10.01.3 Planetary Missions
- 10.01.4 Planet and Satellite Orbits and Rotation States
- 10.01.5 Composition and Interior Structure of Planets
- 10.01.6 Surfaces and Atmospheres
- 10.01.7 Energy Balance and Evolution
- 10.01.8 Magnetic Fields and Field Generation
- 10.01.9 Origin of the Solar System
- 10.01.10 Concluding Remarks
- References
- 10.02. Interior Structure, Composition, and Mineralogy of the Terrestrial Planets
- Abstract
- Acknowledgments
- 10.02.1 Introduction
- 10.02.2 Observational Methods
- 10.02.3 Interior Structure and Composition
- 10.02.4 Earth as a Type Example of a Terrestrial Planet
- 10.02.5 Vesta
- 10.02.6 The Moon
- 10.02.7 Mercury
- 10.02.8 Mars
- 10.02.9 Venus
- 10.02.10 Solid Exoplanets
- 10.02.11 Summary and Outlook
- References
- 10.03. Planetary Seismology
- Abstract
- Acknowledgments
- 10.03.1 Introduction
- 10.03.2 Lunar Results
- 10.03.3 Seismic Activity of the Moon and Terrestrial Planets
- 10.03.4 Atmospheric Seismology
- 10.03.5 The New Step: Mars Seismology
- 10.03.6 Concluding Remarks
- References
- 10.04. Rotation of the Terrestrial Planets
- Abstract
- Acknowledgments
- 10.04.1 Introduction
- 10.04.2 Theoretical Foundations
- 10.04.3 Mars
- 10.04.4 Venus
- 10.04.5 Mercury
- 10.04.6 Summary
- References
- 10.05. Gravity and Topography of the Terrestrial Planets
- Abstract
- Acknowledgments
- 10.05.1 Introduction
- 10.05.2 Mathematical Preliminaries
- 10.05.3 The Data
- 10.05.4 Methods for Calculating Gravity from Topography
- 10.05.5 Crustal Thickness Modeling
- 10.05.6 Admittance Modeling
- 10.05.7 Localized Spectral Analysis
- 10.05.8 Summary of Major Results
- 10.05.9 Future Developments and Concluding Remarks
- References
- 10.06. Planetary Magnetism
- Abstract
- 10.06.1 Introduction
- 10.06.2 Tools
- 10.06.3 Terrestrial Planets
- 10.06.4 Gas Giants
- 10.06.5 Ice Giants
- 10.06.6 Satellites and Small Bodies
- 10.06.7 Discussion
- 10.06.8 Summary
- References
- 10.07. Planetary Dynamos
- Abstract
- 10.07.1 Historical Introduction
- 10.07.2 General Remarks on the Dynamo Theory of Planetary Magnetism
- 10.07.3 Mathematical Formulation of the Problem of Spherical Dynamos
- 10.07.4 Convection in Rotating Spherical Shells
- 10.07.5 Convection-Driven Dynamos
- 10.07.6 Applications to Planetary Dynamos
- 10.07.7 Concluding Remarks
- References
- 10.08. Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io
- Abstract
- Acknowledgments
- 10.08.1 Introduction
- 10.08.2 Physical and Chemical Properties of Planets and Planetary Materials Bearing on Mantle Dynamics and Thermal Evolution Models
- 10.08.3 Planform of Convection
- 10.08.4 Thermal Evolution Models Using Parameterized Convection
- 10.08.5 Thermal Evolution, Volcanic History, and Magnetic Field History of Terrestrial Planets
- 10.08.6 Comparison of the Terrestrial Planets and the Moon
- 10.08.7 Io
- 10.08.8 Summary
- References
- 10.09. Planetary Tectonics and Volcanism: The Inner Solar System
- Abstract
- 10.09.1 Introduction
- 10.09.2 Planetary Volcanism and Tectonics
- 10.09.3 The Moon
- 10.09.4 Mars
- 10.09.5 Venus
- 10.09.6 Mercury
- 10.09.7 Summary
- References
- 10.10. Exogenic Dynamics, Cratering, and Surface Ages
- Abstract
- 10.10.1 Introduction
- 10.10.2 The Evolution of the Solar System
- 10.10.3 Impact Craters: Morphology
- 10.10.4 Basics of Impact Cratering Processes
- 10.10.5 Cratering Statistics
- 10.10.6 Impact Rate Estimates
- 10.10.7 Extraterrestrial Surface Dating
- 10.10.8 Conclusions
- Acknowledgments
- References
- 10.11. Water on the Terrestrial Planets
- Abstract
- 10.11.1 Introduction
- 10.11.2 Observational Evidence
- 10.11.3 Water on the Surface
- 10.11.4 Water in Mantle and Crust
- 10.11.5 Evolution of Water and Climate
- 10.11.6 Summary and Outlook
- References
- 10.12. Solid Planet–Atmosphere Interactions
- Abstract
- 10.12.1 Atmosphere–Surface Interplay on Solar System Bodies
- 10.12.2 Observational Constraints on Venus and Mars
- 10.12.3 Chemistry of Atmosphere–Surface Reactions on Mars and Venus
- 10.12.4 Wind-Related Processes
- 10.12.5 Atmosphere–Surface Interactions Throughout History
- 10.12.6 Summary and Unsolved Questions
- References
- 10.13. Planetary Atmospheres
- Abstract
- Acknowledgments
- 10.13.1 Introduction and Scope
- 10.13.2 Composition and Vertical Structure
- 10.13.3 Radiation
- 10.13.4 Photochemistry
- 10.13.5 Atmospheric Dynamics
- 10.13.6 Outstanding Questions
- References
- 10.14. Geology, Life, and Habitability
- Abstract
- 10.14.1 Introduction
- 10.14.2 Geology, Life, and Habitability
- 10.14.3 Geology and Life
- 10.14.4 Conclusions for Geology, Life, and Habitability Beyond the Earth
- References
- 10.15. Asteroids and Comets
- Abstract
- Acknowledgments
- 10.15.1 Introduction
- 10.15.2 Origins
- 10.15.3 Surfaces
- 10.15.4 Structure, Interior, and Spin
- 10.15.5 Composition
- 10.15.6 Big Questions and the Future
- References
- 10.16. Giant Planets
- Abstract
- Acknowledgments
- 10.16.1 Introduction
- 10.16.2 Observations and Global Properties
- 10.16.3 The Calculation of Interior and Evolution Models
- 10.16.4 Interior Structures and Evolutions
- 10.16.5 Implications for Planetary Formation Models
- 10.16.6 Future Prospects
- References
- 10.17. The Origin of the Natural Satellites
- Abstract
- Acknowledgments
- 10.17.1 Introduction
- 10.17.2 Earth–Moon System
- 10.17.3 Mars System
- 10.17.4 Jupiter System
- 10.17.5 Saturn System
- 10.17.6 Uranus System
- 10.17.7 Neptune System
- 10.17.8 Pluto System
- 10.17.9 Irregular Satellites
- Appendix A Accretion Disks
- Appendix B Tides
- References
- 10.18. Interiors and Evolution of Icy Satellites
- Abstract
- Acknowledgments
- 10.18.1 Introduction
- 10.18.2 Spectroscopic Constraints on Composition
- 10.18.3 Elemental Abundance from Density
- 10.18.4 Size, Shape, and Mass
- 10.18.5 Modeling the Interior Structure
- 10.18.6 Evolution of Satellite Interiors
- 10.18.7 Interior Structure of Selected Icy Satellites
- 10.18.8 Future Prospects for Determining Satellite Internal Structure
- References
- 10.19. Introduction to ‘Pluto, Charon, and the Kuiper Belt Objects’: Pluto on the Eve of the New Horizons Encounter
- Abstract
- Acknowledgments
- 10.19.1 Introduction
- 10.19.2 The Pluto–Charon System
- 10.19.3 The Largest Trans-Neptunian Dwarf Planets and Dwarf Planet Candidates
- 10.19.4 The Kuiper Belt
- 10.19.5 Final Remarks
- References
- 10.20. Pluto, Charon, and the Kuiper Belt Objects
- Abstract
- 10.20.1 Overviews
- 10.20.2 Environment
- 10.20.3 Physical Properties
- 10.20.4 Origin
- 10.20.5 Future Observational Goals and Prospects
- References
- Relevant Websites
- 10.21. Exoplanetary Geophysics: An Emerging Discipline
- Abstract
- 10.21.1 Introduction
- 10.21.2 Planetary Detection Methods
- 10.21.3 An Overview of the Current Planetary Catalog and Census
- 10.21.4 Planetary Geophysics
- 10.21.5 Planet Formation
- 10.21.6 Questions for the Next 10 Years and Beyond
- References
- 10.22. Mission Analysis Issues for Planetary Exploration Missions
- Abstract
- 10.22.1 Scientific Rationale and Present Status of Planetary Exploration Missions
- 10.22.2 Energy Requirements and Mass Budgets for Planetary Missions
- 10.22.3 Remote-Sensing and In Situ Missions to Venus and Mars
- 10.22.4 Orbit Evolution Around Planetary Bodies
- 10.22.5 In Situ Missions to Atmosphereless Bodies
- 10.22.6 Gravity-Assist Missions: Giant Planets, Mercury, Asteroid, and Comet Rendezvous
- 10.22.7 Advanced Propulsion Systems: Solar Sail and Ion Propulsions
- 10.22.8 The Specific Challenges of Sample Return Missions
- References
- 10.23. Instrumentation for Planetary Exploration Missions
- Abstract
- 10.23.1 Introduction
- 10.23.2 Building on Past Missions
- 10.23.3 Exploration Strategies and Associated Techniques
- 10.23.4 Instruments
- 10.23.5 Instrument Suites for Exploration
- 10.23.6 Outlook and Timeline
- References
- Relevant Websites
- 10.01. Physics of Terrestrial Planets and Moons: An Introduction and Overview
- Volume 11: Resources in the Near-Surface Earth
- 11.01. Resources in the Near-Surface Earth: An Introduction and Overview
- Abstract
- 11.01.1 Introduction: Definitions, Opportunities, and Challenges
- 11.01.2 Physical Properties of the Near Surface
- 11.01.3 Hydrocarbon and Mineral Resources in the Near Surface
- 11.01.4 Anthropogenic Footprints in the Near Surface
- 11.01.5 The Cryosphere
- 11.01.6 Water Resources and Hydrogeophysics
- 11.01.7 Biogeophysics
- 11.01.8 Interpretation of Near-Surface Geophysical Datasets
- 11.01.9 Overview of the New Volume
- 11.01.10 Future Challenges for NSG
- 11.01.11 Future Needs in NSG
- References
- 11.02. Physics of Porous Media: Fluid Flow Through Porous Media
- Abstract
- Acknowledgments
- 11.02.1 Introduction
- 11.02.2 Materials
- 11.02.3 Microstructure
- 11.02.4 Single-Phase Flow
- 11.02.5 Solute Transport
- 11.02.6 Multiphase Flow
- 11.02.7 Processes Affecting Permeability
- 11.02.8 Concluding Statement
- References
- 11.03. Geophysical Properties of the Near Surface Earth: Seismic Properties
- Abstract
- Acknowledgments
- 11.03.1 Introduction
- 11.03.2 Basic Theory
- 11.03.3 Mineral Building Blocks
- 11.03.4 Fluid Properties
- 11.03.5 The Rock Frame
- 11.03.6 Seismic Waves in Fluid-Saturated Rocks
- 11.03.7 Empirical Relations and Data Compilations
- 11.03.8 The Road Ahead
- References
- Glossary
- 11.04. Geophysical Properties of the Near Surface Earth: Electrical Properties
- Abstract
- 11.04.1 Introduction to the Electrical Properties of Near-Surface Rocks
- 11.04.2 Steady-State Electrical Properties
- 11.04.3 Mixing Models for the Electrical Conductivity of Geomaterials
- 11.04.4 Surface Conduction
- 11.04.5 Frequency-Dependent Electrical Properties
- 11.04.6 Electrokinetic Properties
- 11.04.7 Summary
- References
- 11.05. Geophysical Properties of the Near-Surface Earth: Magnetic Properties
- Abstract
- Acknowledgments
- 11.05.1 Introduction
- 11.05.2 Basic Concepts
- 11.05.3 Magnetic Ordering and Magnetic Minerals
- 11.05.4 Induced and Remanent Magnetization
- 11.05.5 Magnetic Petrology: Induced and Remanent Magnetization of Earth Materials
- 11.05.6 Summary
- References
- Glossary
- 11.06. Tools and Techniques: Marine Seismic Methods
- Abstract
- Acknowledgments
- 11.06.1 Introduction
- 11.06.2 The Seismic Method
- 11.06.3 Data and Noise
- 11.06.4 Acquisition Systems
- 11.06.5 Illumination
- 11.06.6 Sampling and Spatial Aliasing
- 11.06.7 Bandwidth
- 11.06.8 Time-Lapse and Reservoir Monitoring
- 11.06.9 Conclusions
- References
- 11.07. Tools and Techniques: Ground-Penetrating Radar
- Abstract
- 11.07.1 Introduction to Ground-Penetrating Radar
- 11.07.2 EM Wave Propagation: Maxwell's Equations
- 11.07.3 Acquisition Setup of a GPR Survey
- 11.07.4 Processing, Imaging, and Inversion of GPR Data
- 11.07.5 Conclusions
- References
- 11.08. Tools and Techniques: Electrical Methods
- Abstract
- Acknowledgments
- 11.08.1 Introduction
- 11.08.2 Measurement Principles
- 11.08.3 Field Configuration
- 11.08.4 Modeling and Inversion
- 11.08.5 Summary and Outlook
- References
- 11.09. Tools and Techniques: Self-Potential Methods
- Abstract
- 11.09.1 Introduction
- 11.09.2 Origin of SP Signals
- 11.09.3 Data Acquisition
- 11.09.4 Data Interpretation, Modeling, and Inversion
- 11.09.5 Selected Case Studies
- 11.09.6 Future Directions
- 11.09.7 Summary
- References
- 11.10. Tools and Techniques: Active-Source Electromagnetic Methods
- Abstract
- 11.10.1 Introduction
- 11.10.2 Physical Properties of Geologic Materials
- 11.10.3 Governing Equations
- 11.10.4 Controlled-Source EM Methods
- 11.10.5 Apparent Resistivity
- 11.10.6 Interpretation
- 11.10.7 Practical Aspects of Survey Design
- 11.10.8 Applications and Examples
- 11.10.9 Summary
- References
- 11.11. Tools and Techniques: Magnetic Methods of Exploration – Principles and Algorithms
- Abstract
- Acknowledgments
- 11.11.1 Introduction
- 11.11.2 The Geomagnetic Field
- 11.11.3 The Physics of Magnetism
- 11.11.4 Data Processing
- 11.11.5 Magnetic Forward Modeling
- 11.11.6 Equivalent Source Techniques
- 11.11.7 Magnetic Susceptibility Inversion
- 11.11.8 Magnetization Inversion
- 11.11.9 Discussion
- References
- 11.12. Tools and Techniques: Gravitational Method
- Abstract
- 11.12.1 Introduction: The Role of the Gravitational Method in Near-Surface Investigations
- 11.12.2 Fundamentals
- 11.12.3 Gravity Fields of Simple Sources in Cartesian Coordinates
- 11.12.4 Gravity Gradient Tensor Components
- 11.12.5 Poisson's Relation
- 11.12.6 The Earth's Gravity Field
- 11.12.7 Density
- 11.12.8 Instrumentation
- 11.12.9 Field Procedures on Land
- 11.12.10 Data Reduction
- 11.12.11 Gravity Profiles and Grids
- 11.12.12 Filtering
- 11.12.13 Interpretation: Forward Modeling
- 11.12.14 Interpretation: Source Location Methods Applied to Gravity
- 11.12.15 Interpretation: Inversion
- 11.12.16 Field Examples
- 11.12.17 Summary
- Disclaimer
- References
- 11.13. Tools and Techniques: Nuclear Magnetic Resonance
- Abstract
- Abbreviations
- Acknowledgments
- 11.13.1 Introduction
- 11.13.2 Fundamentals of NMR
- 11.13.3 Laboratory NMR
- 11.13.4 Borehole NMR
- 11.13.5 Surface NMR
- 11.13.6 The NMR Link to Rock Properties
- 11.13.7 Case Histories
- 11.13.8 Summary
- References
- 11.14. Tools and Techniques: Radiometric Methods
- Abstract
- Acknowledgments
- 11.14.1 Introduction
- 11.14.2 Fundamental Principles and Theory
- 11.14.3 Instrumentation
- 11.14.4 Data Acquisition
- 11.14.5 Data Processing
- 11.14.6 Data Presentation and Visualization
- 11.14.7 Data Analysis
- 11.14.8 Interpretation and Applications
- 11.14.9 Conclusions and Future Directions
- References
- 11.15. Mineral Resources
- Abstract
- 11.15.1 Introduction
- 11.15.2 Metals and Their Minerals of Economic Interest
- 11.15.3 Physical Properties of Minerals and Rocks
- 11.15.4 Geophysical Methods Applied to Mineral Exploration
- 11.15.5 Nonmetallic Deposits
- 11.15.6 Recent Geophysical Developments
- 11.15.7 Future Developments
- References
- 11.16. Unconventional Fossil Fuel Reservoirs and Water Resources
- Abstract
- Acknowledgments
- 11.16.1 Introduction
- 11.16.2 Unconventional Resources
- 11.16.3 Shale Gas and Shale Oil
- 11.16.4 Heavy Oil and Oil Sands
- 11.16.5 Water Issues Associated with Unconventional Resource Extraction
- 11.16.6 Wastewater
- 11.16.7 Synthesis
- References
- 11.17. Near-Surface Geophysics at the Hanford Nuclear Site, the United States
- Abstract
- 11.17.1 Introduction
- 11.17.2 Hanford Site Operational History
- 11.17.3 Plutonium Production Process
- 11.17.4 Waste Disposal Operations
- 11.17.5 Seismic Reflection Imaging of Groundwater Flow Boundaries at the Hanford 200 Area
- 11.17.6 Groundwater/River Water Interaction Beneath Hanford 300 Area Infiltration Ponds
- 11.17.7 Vadose Zone Contaminant Mapping at the Hanford 200 East Area B-Complex
- 11.17.8 Long Electrode ERT Imaging of HLW Inside Tank Farms
- 11.17.9 HLW Tank Leak Detection Using Electrical Methods
- 11.17.10 Engineered Vadose Zone Desiccation Monitoring in the Hanford BC Cribs Area
- 11.17.11 Underground Infrastructure Mapping and Site Clearance
- 11.17.12 Long-Term Legacy: The Role of Geophysics
- References
- 11.01. Resources in the Near-Surface Earth: An Introduction and Overview
- Index
- Authors
Product details
- No. of pages: 5604
- Language: English
- Copyright: © Elsevier 2015
- Published: April 17, 2015
- Imprint: Elsevier
- Hardcover ISBN: 9780444538024
- eBook ISBN: 9780444538031
About the Editor in Chief
Gerald Schubert
Gerald Schubert is Distinguished Professor Emeritus in the Department of Earth, Planetary and Space Sciences at the University of California, Los Angeles. His research interests encompass the physics of the interiors and atmospheres of the Earth, the Moon, and the other moons and planets of the solar system. He is co-author with Donald Turcotte of Geodynamics (ed. 3, Cambridge University Press, 2014) and with Turcotte and Peter Olson of Mantle Convection in the Earth and Planets (Cambridge University Press, 2001). He is the author of over 540 research papers. He has participated in a number of NASA’s planetary missions, including Apollo, Pioneer Venus, Magellan, and Galileo, and has been editor and editorial board member of many journals, including Icarus, Journal of Geophysical Research, Geophysical Research Letters, and Annual Reviews of Earth and Planetary Sciences. Professor Schubert is a Fellow of the American Geophysical Union and a recipient of the Union’s James B. MacElwane medal and the Harry H. Hess medal. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences.
Affiliations and Expertise
Professor Emeritus, Department of Earth, Planetary, and Space Sciences , UCLA, USA