The Theory and Practice of Scintillation Counting

The Theory and Practice of Scintillation Counting

International Series of Monographs in Electronics and Instrumentation

1st Edition - January 1, 1964

Write a review

  • Author: J. B. Birks
  • eBook ISBN: 9781483156064

Purchase options

Purchase options
DRM-free (PDF)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.

Table of Contents


  • Preface

    Acknowledgments

    Chapter 1. Introduction

    1.1. The Detection of Atomic and Nuclear Radiations

    1.1.1. Dosimeters

    1.1.2. Track Visualization Instruments

    1.1.3. Counters

    1.1.4. Applications of Counters

    1.2. Early History of the Scintillation Counter

    1.2.1. Visual Scintillation Counters

    1.2.2. Geiger Scintillation Counters

    1.2.3. Photomultiplier Scintillation Counters

    1.3. Principles of the Scintillation Counter

    1.4. General Bibliography

    1.5. References

    Chapter 2. Absorption of the Incident Radiation

    2.1. Nature of the Radiations

    2.2. Heavy Charged Particles

    2.3. Electrons

    2.4. Electromagnetic Radiations

    2.4.1. The Compton Effect

    2.4.2. The Photo-electric Effect

    2.4.3. Pair Production

    2.4.4. Multiple Processes

    2.5. Neutrons

    2.5.1. Scattering

    2.5.2. Absorption

    2.6. References

    Chapter 3. The Scintillation Process in Organic Materials—I

    3.1. The Electronic Structure of Organic Molecules

    3.2. Excited States of π-Electron Systems

    3.2.1. Classification on Free-electron Model

    3.2.2. Absorption Spectra

    3.3. Luminescence

    3.3.1. Fluorescence

    3.3.2. Phosphorescence and Delayed Fluorescence

    3.3.3. Dimers

    3.4. Classification of Organic Scintillators

    3.5. Outline of Scintillation Phenomena

    3.6. The Scintillation Mechanism

    3.7. The Primary Processes

    3.7.1. Excitation and Ionization

    3.7.2. Primary Excitation Energy

    3.7.3. Internal Conversion

    3.8. Fluorescence of Unitary Systems

    3.8.1. De-excitation Processes

    3.8.2. Thin Crystals

    3.8.3. Thick Crystals

    3.9. Energy Transfer and Fluorescence in Binary Systems

    3.10. Energy Transfer and Fluorescence in Ternary Systems

    3.11. The Absolute Scintillation Efficiency

    3.12. References

    Chapter 4. The Scintillation Process in Inorganic Crystals—I

    4.1. Introduction

    4.2. The Energy Band Model

    4.2.1. Perfect Crystals

    4.2.2. Imperfect Crystals

    4.3. Conditions for Luminescence of a Center

    4.4. Classification of Inorganic Phosphors and Scintillators

    4.4.1. Phosphors

    4.4.2. Scintillators

    4.5. Outline of Scintillation Phenomena

    4.6. Optical Properties of Alkali Halide Crystals

    4.6.1. General

    4.6.2. Absorption Spectra

    4.6.3. Luminescence Spectra

    4.7. Optical Properties of Thallium Activator Centers

    4.7.1. Absorption Spectra

    4.7.2. Luminescence Spectra

    4.7.3. Theoretical Model

    4.7.4. Photoluminescence Decay Times

    4.8. The Scintillation Mechanism

    4.8.1. Sequence of Processes

    4.8.2. The Absolute Scintillation Efficiency

    4.9. References

    Chapter 5. The Detection of Scintillations

    5.1. Light Collection

    5.1.1. Self-absorption in the Scintillator

    5.1.2. Light Trapping

    5.1.3. Reflectors

    5.1.4. NaI(Tl) Crystal Assemblies

    5.1.5. Light Guides and Couplers

    5.2. Spectral Response

    5.2.1. Spectral Matching

    5.2.2. Factors Determining Cathode Spectral Response

    5.2.3. Specification of Cathode Response and Sensitivity

    5.2.4. Types of Photocathode

    5.3. Photomultipliers

    5.3.1. Dynode Structures

    5.3.2. Cathode-First Dynode Structures

    5.3.3. Uniformity of Photocathode Response

    5.3.4. Gain

    5.3.5. High Tension Supply

    5.3.6. The Anode

    5.3.7. Feedback and Satellite Pulses

    5.3.8. Other Background Effects

    5.3.9. Fatigue

    5.3.10. Magnetic Field Effects

    5.3.11. Dark Noise

    5.3.12. Reduction of Effect of Dark Noise

    5.3.13. Temperature Dependence of Sensitivity and Response

    5.3.14. Commercial Photomultipliers

    5.4. Pulse Amplitude Resolution

    5.4.1. Theoretical Studies

    5.4.2. Factors Contributing to Line Width

    5.4.3. Scintillator Resolution

    5.4.4. Experimental Studies

    5.4.5. Anthracene Excited by Electrons

    5.4.6. Sodium Iodide (Thallium) Excited by γ-Rays

    5.5. Pulse Shape and Time Resolution

    5.5.1. The Light Pulse and Photo-electron Emission

    5.5.2. The Single Electron Response

    5.5.3. The Anode Pulse Shape

    5.5.4. Statistics and Time Resolution

    5.5.5. Effect of Anode Pulse Shape on Pulse Amplitude Resolution

    5.6. References

    Chapter 6. The Scintillation Process in Organic Materials—II

    6.1. The Scintillation Response to Different Ionizing Radiations

    6.1.1. Review of Experimental Data

    6.1.2. Ionization Quenching

    6.1.3. Bimolecular Quenching

    6.1.4. Static and Dynamic Quenching

    6.1.5. Response to Heavy Ions

    6.1.6. Kinetics of Quenching

    6.2. Surface Quenching Effects

    6.3. Radiation Damage

    6.3.1. Crystals

    6.3.2. Plastic Solutions

    6.3.3. Liquid Solutions

    6.4. The Scintillation and Fluorescence Decay of Pure Crystals

    6.4.1. Theory

    6.4.2. Anthracene

    6.4.3. Other Crystals

    6.5. The Slow Scintillation Component

    6.5.1. Review of Experimental Data

    6.5.2. Theories of Origin

    6.6. The Scintillation Decay of Solutions

    6.6.1. Theory of Binary Solutions

    6.6.2. Review of Experimental Data

    6.6.3. Ternary Solutions

    6.7. References

    Chapter 7. Organic Crystal Scintillators

    7.1. Introduction

    7.2. Anthracene

    7.2.1. Crystal Structure

    7.2.2. Absorption Spectra

    7.2.3. Anthracene as a Scintillator Standard

    7.2.4. Purification and Crystal Growth

    7.2.5. Scintillation Efficiency

    7.2.6. Other Data

    7.3. Other Organic Crystals

    7.3.1. Relative Efficiencies

    7.3.2. Scintillation Decay Times

    7.3.3. trans-Stilbene

    7.3.4. Diphenylacetylene

    7.3.5. p-Terphenyl

    7.3.6. p-Quaterphenyl

    7.3.7. 1,4-Diphenylbutadiene

    7.4. Mixed Organic Crystals and Exciton Migration

    7.4.1. Review of Experimental Studies

    7.4.2. Energy Transfer and Exciton Migration

    7.4.3. Response Anisotropy

    7.4.4. Exciton Lifetime

    7.4.5. Low Temperature Behavior

    7.4.6. Radiative Transfer

    7.4.7. Mixed Crystal Scintillators

    7.5. References

    Chapter 8. Organic Liquid Scintillators

    8.1. Introduction

    8.2. Pure Solvents

    8.3. Mixed Solvents and Loading with Other Compounds

    8.3.1. Mixed Solvents

    8.3.2. Naphthalene as an Additive

    8.3.3. Boron Loading

    8.3.4. Dioxane Mixtures

    8.4. Primary Solutes

    8.4.1. Initial Studies

    8.4.2. The Oxazoles, Oxadiazoles and Related Compounds

    8.4.3. The Substituted p-Oligophenylenes

    8.5. Secondary Solutes

    8.6. Spectral Effects

    8.7. Oxygen Quenching

    8.7.1. Experimental Studies

    8.7.2. Elimination of Oxygen

    8.8. Temperature Effects

    8.9. Scintillation Decay Times

    8.10. Energy Migration and Transfer

    8.10.1. Initial Studies

    8.10.2. Ultraviolet Excitation Studies

    8.10.3. PPO-Xylene Solutions

    8.10.4. Impurity Quenching Studies

    8.10.5. Dipole-Dipole Interaction

    8.10.6. Effect of Molecular Diffusion

    8.10.7. Description of Solvent-Solute Transfer Process

    8.10.8. The Domain Hypothesis

    8.10.9. Solute-Solute Energy Transfer

    8.11. Concentration Quenching and Dimer Formation

    8.12. References

    Chapter 9. Organic Plastic Scintillators

    9.1. Introduction

    9.2. Preparation of Plastic Scintillators

    9.3. Solvents

    9.3.1. Relative Efficiencies

    9.3.2. Mixed Solvents

    9.3.3. Influence of Molecular Weight

    9.4. Primary and Secondary Solutes

    9.5. Optical Transmission

    9.6. Temperature Effects

    9.7. Loading with Heavy Elements

    9.8. Scintillation Decay Times

    9.9. Organic Glasses

    9.10. Energy Transfer

    9.10.1. Radiative and Non-radiative Transfer

    9.10.2. Non-radiative Transfer and Migration

    9.10.3. Impurity Quenching Studies

    9.10.4. Polymer Chain Attachment

    9.10.5. Stereo-isomerism

    9.11. Molecular Structure and Scintillation Properties

    9.11.1. Solvents

    9.11.2. Solutes

    9.12. References

    Chapter 10. Applications of Organic Scintillators

    10.1. Properties and Uses of Organic Scintillators

    10.2. β-Particle Detection and Spectrometry

    10.2.1. β-Particle Detection

    10.2.2. Internal-sample Liquid Scintillation Counting

    10.2.3. Incorporation of the Specimen

    10.2.4. Low-level Counting Systems

    10.2.5. β-Particle Spectrometry

    10.2.6. Scintillators in Magnetic Spectrometers

    10.3. γ-Ray Detection and Spectrometry

    10.3.1. γ-Ray Spectrometry

    10.3.2. γ-Ray Detection

    10.4. Fast Neutron Detection and Spectrometry

    10.4.1. Single Scintillator Spectrometry

    10.4.2. Neutron-γ-Ray Discrimination

    10.4.3. Heterogeneous Scintillators for η/γ Discrimination

    10.4.4. The "Twin" Fast Neutron Detector

    10.4.5. Pulse Shape Discrimination

    10.5. Coincidence Methods

    10.5.1. Introduction

    10.5.2. Coincidence Circuits and Timing Devices

    10.5.3. Absolute Source Calibration

    10.5.4. γ-Ray Angular Correlation and Polarization Studies

    10.5.5. Positron Annihilation Studies

    10.5.6. Delayed Coincidences and Lifetimes of Excited States of Nuclei

    10.5.7. Coincidence β-Particle and γ-Ray Spectrometry

    10.5.8. Coincidence Spectrometry of Fast Neutrons

    10.5.9. Time-of-flight Spectrometry of Fast Neutrons

    10.6. High Energy and Elementary Particle Studies

    10.6.1. Large Scintillators

    10.6.2. Counter Telescopes

    10.6.3. Scintillation Chambers

    10.6.4. Neutron and Neutrino Studies

    10.7. References

    Chapter 11. The Scintillation Process in Inorganic Crystals—II

    11.1. The Scintillation Response to γ-Rays and Electrons

    11.1.1. Sodium Iodide (Thallium)

    11.1.2. Cesium Iodide (Thallium)

    11.1.3. Discussion

    11.2. The Scintillation Response to Heavy Ionizing Particles

    11.2.1. Sodium Iodide (Thallium)

    11.2.2. Effect of Tl Concentration

    11.2.3. Cesium Iodide (Thallium)

    11.2.4. Other Alkali Halides

    11.3. Theory of the Scintillation Response

    11.3.1. Review of the Data

    11.3.2. The Murray-Meyer Model

    11.3.3. Comparison with Organic Scintillators

    11.3.4. The Effect of δ-Rays

    11.4. The Scintillation Rise and Decay

    11.4.1. Sodium Iodide (Thallium)

    11.4.2. Temperature Dependence in NaI(Tl) and "Pure" NaI

    11.4.3. Cesium Iodide (Thallium)

    11.4.4. Other Alkali Halides

    11.5. Effect of Temperature on Scintillation Efficiency

    11.5.1. Theoretical Model

    11.5.2. "Pure" Alkali Halides

    11.5.3. Sodium Iodide (Thallium)

    11.5.4. Cesium Iodide (Thallium)

    11.5.5. An Approach to a General Theory

    11.6. References

    Chapter 12. Alkali Halide Crystals Scintillators and Their Applications

    12.1. Sodium Iodide (Thallium)

    12.1.1. Review of Previous Data

    12.1.2. Crystal Preparation

    12.1.3. Scintillation Efficiency

    12.1.4. The Photon Interaction Ratio

    12.1.5. Scattered Radiation

    12.1.6. The Photon Escape Peaks

    12.1.7. The Iodine Escape Peak

    12.1.8. X-Ray Spectrometry

    12.1.9. The Photo-fraction and y-Ray Detection Efficiency

    12.1.10. γ-Ray Spectrometry

    12.1.11. The Spectrometer Response Function

    12.1.12. Pulse Amplitude Analyzers

    12.1.13. Total Absorption and Summing Spectrometers

    12.1.14. Anti-coincidence Shielding

    12.1.15. Coincidence Spectrometers

    12.1.16. Neutron Absorption

    12.1.17. Human γ-Ray Spectrometry

    12.1.18. Detection of High-energy γ-Rays and Electrons

    12.1.19. Other Applications

    12.2. Cesium Iodide (Thallium)

    12.2.1. Review of Previous Data

    12.2.2. Crystal Preparation

    12.2.3. Scintillation Efficiency and Emission Spectrum

    12.2.4. γ-Ray Spectrometry

    12.2.5. Heavy Particle and Fast Neutron Spectrometry

    12.2.6. Particle Discrimination

    12.2.7. Dual Scintillator Systems

    12.3. Lithium Iodide Phosphors

    12.3.1. Slow Neutron Detection

    12.3.2. Fast Neutron Spectrometry

    12.4. Potassium Iodide (Thallium)

    12.5. "Pure" Alkali Halides

    12.5.1. Sodium Iodide

    12.5.2. Cesium Iodide

    12.5.3. Low Temperature Studies

    12.6. Other Alkali Halides

    12.6.1. Rubidium Iodide (Thallium)

    12.6.2. Cesium Fluoride

    12.6.3. Cesium Bromide (Thallium)

    12.6.4. Other Materials

    12.7. References

    Chapter 13. Other Inorganic Solid Scintillators and Their Applications

    13.1. Zinc Sulphide

    13.1.1. Detection and Scintillation Efficiencies

    13.1.2. Scintillation Decay

    13.1.3. Heavy Particle Detection

    13.1.4. Scintillation Response

    13.1.5. Radiation Damage

    13.1.6. Fast Neutron Detection

    13.1.7. Slow Neutron Detection

    13.2. Cadmium Sulphide

    13.3. The Tungstate Phosphors

    13.4. Inorganic Glass Scintillators

    13.4.1. Composition and Scintillation Efficiency

    13.4.2. Slow Neutron Detection

    13.5. Other Inorganic Scintillators

    13.5.1. Boron Compounds

    13.5.2. Diamond

    13.5.3. Scintillators and Phosphors Containing Various Elements

    13.6. References

    Chapter 14. Gas Scintillators and Their Applications

    14.1. Nitrogen and Air

    14.1.1. Introduction

    14.1.2. Emission Spectrum

    14.1.3. Scintillation Efficiency and Collisional Quenching

    14.1.4. Scintillation Decay Times

    14.1.5. Background Luminescence from Air, Glass and Quartz

    14.2. The Inert Gases

    14.2.1. Introduction

    14.2.2. The Primary Processes

    14.2.3. Emission Spectra

    14.2.4. Scintillation Decay Times

    14.2.5. The Effect of Nitrogen

    14.2.6. Fluorescent Converters and Practical Scintillation Efficiencies

    14.2.7. Mixtures of Inert Gases

    14.2.8. Scintillation Response to Different Particles

    14.2.9. Applications of Gas Scintillators

    14.2.10. Light Amplification by an Electric Field

    14.2.11. High-pressure Gas Scintillators

    14.2.12. Neutron Detection and Spectrometry

    14.3. Liquid and Solid Inert Elements

    14.3.1. Scintillation Properties

    14.3.2. Liquid Helium

    14.3.3. Neutron Polarimetry

    14.4. References

    Chapter 15. Conclusion

    References

    Chapter 16. Postscript

    3.7.1. The Primary Processes in Organic Materials

    3.7.3. Internal Conversion in Organic Materials

    5.1.5. Light Guides and Couplers

    5.3.9. Photomultiplier Fatigue

    5.3.12. Reduction of Effect of Dark Noise

    5.3.14. Commercial Photomultipliers

    5.4. Pulse Amplitude Resolution

    5.5.4. Statistics and Time Resolution

    5.5.5. Effect of Anode Pulse Shape on Pulse Amplitude Resolution

    6.1. Scintillation Response of Anthracene to Different Ionizing Radiations

    6.3.3. Radiation Damage of Liquid Solutions

    6.4. The Scintillation Decay of Organic Crystals

    6.5. The Slow Scintillation Component in Organic Systems

    7.3. Scintillation and Fluorescence Efficiencies of Organic Crystals

    7.4. Mixed Organic Crystals

    7.4.3. Scintillation Response Anisotropy

    8.2. Liquid Scintillator Solvents

    8.4. Liquid Scintillator Solutes

    8.9. Liquid Scintillator Decay Times

    8.10. Energy Migration and Transfer

    8.11. Dimer Formation

    9.2. Preparation of Plastic Scintillators

    9.8. Plastic Scintillator Decay Times

    9.10. Energy Transfer in Plastic Scintillators

    10.2. β-Particle Detection and Spectrometry

    10.5. Coincidence Methods

    11.1. Scintillation Response of NaI(Tl) and Cs(Tl) to X-Rays and γ-Rays

    11.4.3. Temperature Dependence of Decay Time and Efficiency of CsI(Tl) and "Pure" Csl

    12.1.5. Scattered Radiation in γ-Ray Spectrometry

    12.1.9. The Photo-fraction and γ-Ray Detection Efficiency

    12.1.13. Total Absorption and Summing Spectrometers

    12.1.14. Anti-coincidence Shielding

    12.1.15. Sum-coincidence Spectrometry

    12.2.5. Heavy Particle Spectrometry

    12.2.7. Dual Scintillator Systems

    13.1.6. Intermediate Energy Neutron Detection

    13.4. Inorganic Glass Scintillators

    13.5. Other Inorganic Scintillators

    14.2. Inert Gases

    14.2.10. Light Amplification by an Electric Field

    14.3.2. Liquid Helium and Argon

    References

    Author Index

    Volumes Published in the Series on Electronics and Instrumentation


Product details

  • No. of pages: 684
  • Language: English
  • Copyright: © Pergamon 1964
  • Published: January 1, 1964
  • Imprint: Pergamon
  • eBook ISBN: 9781483156064

About the Author

J. B. Birks

About the Editors

D.W. Fry

L. Costrell

K. Kandiah

Ratings and Reviews

Write a review

There are currently no reviews for "The Theory and Practice of Scintillation Counting"