The Theory and Practice of Scintillation Counting - 1st Edition - ISBN: 9780080104720, 9781483156064

The Theory and Practice of Scintillation Counting

1st Edition

International Series of Monographs in Electronics and Instrumentation

Authors: J. B. Birks
Editors: D.W. Fry L. Costrell K. Kandiah
eBook ISBN: 9781483156064
Imprint: Pergamon
Published Date: 1st January 1964
Page Count: 684
Sales tax will be calculated at check-out Price includes VAT/GST
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
70.95
53.21
53.21
53.21
53.21
53.21
56.76
56.76
56.99
42.74
42.74
42.74
42.74
42.74
45.59
45.59
93.95
70.46
70.46
70.46
70.46
70.46
75.16
75.16
Unavailable
Price includes VAT/GST
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.

Table of Contents


Preface

Acknowledgments

Chapter 1. Introduction

1.1. The Detection of Atomic and Nuclear Radiations

1.1.1. Dosimeters

1.1.2. Track Visualization Instruments

1.1.3. Counters

1.1.4. Applications of Counters

1.2. Early History of the Scintillation Counter

1.2.1. Visual Scintillation Counters

1.2.2. Geiger Scintillation Counters

1.2.3. Photomultiplier Scintillation Counters

1.3. Principles of the Scintillation Counter

1.4. General Bibliography

1.5. References

Chapter 2. Absorption of the Incident Radiation

2.1. Nature of the Radiations

2.2. Heavy Charged Particles

2.3. Electrons

2.4. Electromagnetic Radiations

2.4.1. The Compton Effect

2.4.2. The Photo-electric Effect

2.4.3. Pair Production

2.4.4. Multiple Processes

2.5. Neutrons

2.5.1. Scattering

2.5.2. Absorption

2.6. References

Chapter 3. The Scintillation Process in Organic Materials—I

3.1. The Electronic Structure of Organic Molecules

3.2. Excited States of π-Electron Systems

3.2.1. Classification on Free-electron Model

3.2.2. Absorption Spectra

3.3. Luminescence

3.3.1. Fluorescence

3.3.2. Phosphorescence and Delayed Fluorescence

3.3.3. Dimers

3.4. Classification of Organic Scintillators

3.5. Outline of Scintillation Phenomena

3.6. The Scintillation Mechanism

3.7. The Primary Processes

3.7.1. Excitation and Ionization

3.7.2. Primary Excitation Energy

3.7.3. Internal Conversion

3.8. Fluorescence of Unitary Systems

3.8.1. De-excitation Processes

3.8.2. Thin Crystals

3.8.3. Thick Crystals

3.9. Energy Transfer and Fluorescence in Binary Systems

3.10. Energy Transfer and Fluorescence in Ternary Systems

3.11. The Absolute Scintillation Efficiency

3.12. References

Chapter 4. The Scintillation Process in Inorganic Crystals—I

4.1. Introduction

4.2. The Energy Band Model

4.2.1. Perfect Crystals

4.2.2. Imperfect Crystals

4.3. Conditions for Luminescence of a Center

4.4. Classification of Inorganic Phosphors and Scintillators

4.4.1. Phosphors

4.4.2. Scintillators

4.5. Outline of Scintillation Phenomena

4.6. Optical Properties of Alkali Halide Crystals

4.6.1. General

4.6.2. Absorption Spectra

4.6.3. Luminescence Spectra

4.7. Optical Properties of Thallium Activator Centers

4.7.1. Absorption Spectra

4.7.2. Luminescence Spectra

4.7.3. Theoretical Model

4.7.4. Photoluminescence Decay Times

4.8. The Scintillation Mechanism

4.8.1. Sequence of Processes

4.8.2. The Absolute Scintillation Efficiency

4.9. References

Chapter 5. The Detection of Scintillations

5.1. Light Collection

5.1.1. Self-absorption in the Scintillator

5.1.2. Light Trapping

5.1.3. Reflectors

5.1.4. NaI(Tl) Crystal Assemblies

5.1.5. Light Guides and Couplers

5.2. Spectral Response

5.2.1. Spectral Matching

5.2.2. Factors Determining Cathode Spectral Response

5.2.3. Specification of Cathode Response and Sensitivity

5.2.4. Types of Photocathode

5.3. Photomultipliers

5.3.1. Dynode Structures

5.3.2. Cathode-First Dynode Structures

5.3.3. Uniformity of Photocathode Response

5.3.4. Gain

5.3.5. High Tension Supply

5.3.6. The Anode

5.3.7. Feedback and Satellite Pulses

5.3.8. Other Background Effects

5.3.9. Fatigue

5.3.10. Magnetic Field Effects

5.3.11. Dark Noise

5.3.12. Reduction of Effect of Dark Noise

5.3.13. Temperature Dependence of Sensitivity and Response

5.3.14. Commercial Photomultipliers

5.4. Pulse Amplitude Resolution

5.4.1. Theoretical Studies

5.4.2. Factors Contributing to Line Width

5.4.3. Scintillator Resolution

5.4.4. Experimental Studies

5.4.5. Anthracene Excited by Electrons

5.4.6. Sodium Iodide (Thallium) Excited by γ-Rays

5.5. Pulse Shape and Time Resolution

5.5.1. The Light Pulse and Photo-electron Emission

5.5.2. The Single Electron Response

5.5.3. The Anode Pulse Shape

5.5.4. Statistics and Time Resolution

5.5.5. Effect of Anode Pulse Shape on Pulse Amplitude Resolution

5.6. References

Chapter 6. The Scintillation Process in Organic Materials—II

6.1. The Scintillation Response to Different Ionizing Radiations

6.1.1. Review of Experimental Data

6.1.2. Ionization Quenching

6.1.3. Bimolecular Quenching

6.1.4. Static and Dynamic Quenching

6.1.5. Response to Heavy Ions

6.1.6. Kinetics of Quenching

6.2. Surface Quenching Effects

6.3. Radiation Damage

6.3.1. Crystals

6.3.2. Plastic Solutions

6.3.3. Liquid Solutions

6.4. The Scintillation and Fluorescence Decay of Pure Crystals

6.4.1. Theory

6.4.2. Anthracene

6.4.3. Other Crystals

6.5. The Slow Scintillation Component

6.5.1. Review of Experimental Data

6.5.2. Theories of Origin

6.6. The Scintillation Decay of Solutions

6.6.1. Theory of Binary Solutions

6.6.2. Review of Experimental Data

6.6.3. Ternary Solutions

6.7. References

Chapter 7. Organic Crystal Scintillators

7.1. Introduction

7.2. Anthracene

7.2.1. Crystal Structure

7.2.2. Absorption Spectra

7.2.3. Anthracene as a Scintillator Standard

7.2.4. Purification and Crystal Growth

7.2.5. Scintillation Efficiency

7.2.6. Other Data

7.3. Other Organic Crystals

7.3.1. Relative Efficiencies

7.3.2. Scintillation Decay Times

7.3.3. trans-Stilbene

7.3.4. Diphenylacetylene

7.3.5. p-Terphenyl

7.3.6. p-Quaterphenyl

7.3.7. 1,4-Diphenylbutadiene

7.4. Mixed Organic Crystals and Exciton Migration

7.4.1. Review of Experimental Studies

7.4.2. Energy Transfer and Exciton Migration

7.4.3. Response Anisotropy

7.4.4. Exciton Lifetime

7.4.5. Low Temperature Behavior

7.4.6. Radiative Transfer

7.4.7. Mixed Crystal Scintillators

7.5. References

Chapter 8. Organic Liquid Scintillators

8.1. Introduction

8.2. Pure Solvents

8.3. Mixed Solvents and Loading with Other Compounds

8.3.1. Mixed Solvents

8.3.2. Naphthalene as an Additive

8.3.3. Boron Loading

8.3.4. Dioxane Mixtures

8.4. Primary Solutes

8.4.1. Initial Studies

8.4.2. The Oxazoles, Oxadiazoles and Related Compounds

8.4.3. The Substituted p-Oligophenylenes

8.5. Secondary Solutes

8.6. Spectral Effects

8.7. Oxygen Quenching

8.7.1. Experimental Studies

8.7.2. Elimination of Oxygen

8.8. Temperature Effects

8.9. Scintillation Decay Times

8.10. Energy Migration and Transfer

8.10.1. Initial Studies

8.10.2. Ultraviolet Excitation Studies

8.10.3. PPO-Xylene Solutions

8.10.4. Impurity Quenching Studies

8.10.5. Dipole-Dipole Interaction

8.10.6. Effect of Molecular Diffusion

8.10.7. Description of Solvent-Solute Transfer Process

8.10.8. The Domain Hypothesis

8.10.9. Solute-Solute Energy Transfer

8.11. Concentration Quenching and Dimer Formation

8.12. References

Chapter 9. Organic Plastic Scintillators

9.1. Introduction

9.2. Preparation of Plastic Scintillators

9.3. Solvents

9.3.1. Relative Efficiencies

9.3.2. Mixed Solvents

9.3.3. Influence of Molecular Weight

9.4. Primary and Secondary Solutes

9.5. Optical Transmission

9.6. Temperature Effects

9.7. Loading with Heavy Elements

9.8. Scintillation Decay Times

9.9. Organic Glasses

9.10. Energy Transfer

9.10.1. Radiative and Non-radiative Transfer

9.10.2. Non-radiative Transfer and Migration

9.10.3. Impurity Quenching Studies

9.10.4. Polymer Chain Attachment

9.10.5. Stereo-isomerism

9.11. Molecular Structure and Scintillation Properties

9.11.1. Solvents

9.11.2. Solutes

9.12. References

Chapter 10. Applications of Organic Scintillators

10.1. Properties and Uses of Organic Scintillators

10.2. β-Particle Detection and Spectrometry

10.2.1. β-Particle Detection

10.2.2. Internal-sample Liquid Scintillation Counting

10.2.3. Incorporation of the Specimen

10.2.4. Low-level Counting Systems

10.2.5. β-Particle Spectrometry

10.2.6. Scintillators in Magnetic Spectrometers

10.3. γ-Ray Detection and Spectrometry

10.3.1. γ-Ray Spectrometry

10.3.2. γ-Ray Detection

10.4. Fast Neutron Detection and Spectrometry

10.4.1. Single Scintillator Spectrometry

10.4.2. Neutron-γ-Ray Discrimination

10.4.3. Heterogeneous Scintillators for η/γ Discrimination

10.4.4. The "Twin" Fast Neutron Detector

10.4.5. Pulse Shape Discrimination

10.5. Coincidence Methods

10.5.1. Introduction

10.5.2. Coincidence Circuits and Timing Devices

10.5.3. Absolute Source Calibration

10.5.4. γ-Ray Angular Correlation and Polarization Studies

10.5.5. Positron Annihilation Studies

10.5.6. Delayed Coincidences and Lifetimes of Excited States of Nuclei

10.5.7. Coincidence β-Particle and γ-Ray Spectrometry

10.5.8. Coincidence Spectrometry of Fast Neutrons

10.5.9. Time-of-flight Spectrometry of Fast Neutrons

10.6. High Energy and Elementary Particle Studies

10.6.1. Large Scintillators

10.6.2. Counter Telescopes

10.6.3. Scintillation Chambers

10.6.4. Neutron and Neutrino Studies

10.7. References

Chapter 11. The Scintillation Process in Inorganic Crystals—II

11.1. The Scintillation Response to γ-Rays and Electrons

11.1.1. Sodium Iodide (Thallium)

11.1.2. Cesium Iodide (Thallium)

11.1.3. Discussion

11.2. The Scintillation Response to Heavy Ionizing Particles

11.2.1. Sodium Iodide (Thallium)

11.2.2. Effect of Tl Concentration

11.2.3. Cesium Iodide (Thallium)

11.2.4. Other Alkali Halides

11.3. Theory of the Scintillation Response

11.3.1. Review of the Data

11.3.2. The Murray-Meyer Model

11.3.3. Comparison with Organic Scintillators

11.3.4. The Effect of δ-Rays

11.4. The Scintillation Rise and Decay

11.4.1. Sodium Iodide (Thallium)

11.4.2. Temperature Dependence in NaI(Tl) and "Pure" NaI

11.4.3. Cesium Iodide (Thallium)

11.4.4. Other Alkali Halides

11.5. Effect of Temperature on Scintillation Efficiency

11.5.1. Theoretical Model

11.5.2. "Pure" Alkali Halides

11.5.3. Sodium Iodide (Thallium)

11.5.4. Cesium Iodide (Thallium)

11.5.5. An Approach to a General Theory

11.6. References

Chapter 12. Alkali Halide Crystals Scintillators and Their Applications

12.1. Sodium Iodide (Thallium)

12.1.1. Review of Previous Data

12.1.2. Crystal Preparation

12.1.3. Scintillation Efficiency

12.1.4. The Photon Interaction Ratio

12.1.5. Scattered Radiation

12.1.6. The Photon Escape Peaks

12.1.7. The Iodine Escape Peak

12.1.8. X-Ray Spectrometry

12.1.9. The Photo-fraction and y-Ray Detection Efficiency

12.1.10. γ-Ray Spectrometry

12.1.11. The Spectrometer Response Function

12.1.12. Pulse Amplitude Analyzers

12.1.13. Total Absorption and Summing Spectrometers

12.1.14. Anti-coincidence Shielding

12.1.15. Coincidence Spectrometers

12.1.16. Neutron Absorption

12.1.17. Human γ-Ray Spectrometry

12.1.18. Detection of High-energy γ-Rays and Electrons

12.1.19. Other Applications

12.2. Cesium Iodide (Thallium)

12.2.1. Review of Previous Data

12.2.2. Crystal Preparation

12.2.3. Scintillation Efficiency and Emission Spectrum

12.2.4. γ-Ray Spectrometry

12.2.5. Heavy Particle and Fast Neutron Spectrometry

12.2.6. Particle Discrimination

12.2.7. Dual Scintillator Systems

12.3. Lithium Iodide Phosphors

12.3.1. Slow Neutron Detection

12.3.2. Fast Neutron Spectrometry

12.4. Potassium Iodide (Thallium)

12.5. "Pure" Alkali Halides

12.5.1. Sodium Iodide

12.5.2. Cesium Iodide

12.5.3. Low Temperature Studies

12.6. Other Alkali Halides

12.6.1. Rubidium Iodide (Thallium)

12.6.2. Cesium Fluoride

12.6.3. Cesium Bromide (Thallium)

12.6.4. Other Materials

12.7. References

Chapter 13. Other Inorganic Solid Scintillators and Their Applications

13.1. Zinc Sulphide

13.1.1. Detection and Scintillation Efficiencies

13.1.2. Scintillation Decay

13.1.3. Heavy Particle Detection

13.1.4. Scintillation Response

13.1.5. Radiation Damage

13.1.6. Fast Neutron Detection

13.1.7. Slow Neutron Detection

13.2. Cadmium Sulphide

13.3. The Tungstate Phosphors

13.4. Inorganic Glass Scintillators

13.4.1. Composition and Scintillation Efficiency

13.4.2. Slow Neutron Detection

13.5. Other Inorganic Scintillators

13.5.1. Boron Compounds

13.5.2. Diamond

13.5.3. Scintillators and Phosphors Containing Various Elements

13.6. References

Chapter 14. Gas Scintillators and Their Applications

14.1. Nitrogen and Air

14.1.1. Introduction

14.1.2. Emission Spectrum

14.1.3. Scintillation Efficiency and Collisional Quenching

14.1.4. Scintillation Decay Times

14.1.5. Background Luminescence from Air, Glass and Quartz

14.2. The Inert Gases

14.2.1. Introduction

14.2.2. The Primary Processes

14.2.3. Emission Spectra

14.2.4. Scintillation Decay Times

14.2.5. The Effect of Nitrogen

14.2.6. Fluorescent Converters and Practical Scintillation Efficiencies

14.2.7. Mixtures of Inert Gases

14.2.8. Scintillation Response to Different Particles

14.2.9. Applications of Gas Scintillators

14.2.10. Light Amplification by an Electric Field

14.2.11. High-pressure Gas Scintillators

14.2.12. Neutron Detection and Spectrometry

14.3. Liquid and Solid Inert Elements

14.3.1. Scintillation Properties

14.3.2. Liquid Helium

14.3.3. Neutron Polarimetry

14.4. References

Chapter 15. Conclusion

References

Chapter 16. Postscript

3.7.1. The Primary Processes in Organic Materials

3.7.3. Internal Conversion in Organic Materials

5.1.5. Light Guides and Couplers

5.3.9. Photomultiplier Fatigue

5.3.12. Reduction of Effect of Dark Noise

5.3.14. Commercial Photomultipliers

5.4. Pulse Amplitude Resolution

5.5.4. Statistics and Time Resolution

5.5.5. Effect of Anode Pulse Shape on Pulse Amplitude Resolution

6.1. Scintillation Response of Anthracene to Different Ionizing Radiations

6.3.3. Radiation Damage of Liquid Solutions

6.4. The Scintillation Decay of Organic Crystals

6.5. The Slow Scintillation Component in Organic Systems

7.3. Scintillation and Fluorescence Efficiencies of Organic Crystals

7.4. Mixed Organic Crystals

7.4.3. Scintillation Response Anisotropy

8.2. Liquid Scintillator Solvents

8.4. Liquid Scintillator Solutes

8.9. Liquid Scintillator Decay Times

8.10. Energy Migration and Transfer

8.11. Dimer Formation

9.2. Preparation of Plastic Scintillators

9.8. Plastic Scintillator Decay Times

9.10. Energy Transfer in Plastic Scintillators

10.2. β-Particle Detection and Spectrometry

10.5. Coincidence Methods

11.1. Scintillation Response of NaI(Tl) and Cs(Tl) to X-Rays and γ-Rays

11.4.3. Temperature Dependence of Decay Time and Efficiency of CsI(Tl) and "Pure" Csl

12.1.5. Scattered Radiation in γ-Ray Spectrometry

12.1.9. The Photo-fraction and γ-Ray Detection Efficiency

12.1.13. Total Absorption and Summing Spectrometers

12.1.14. Anti-coincidence Shielding

12.1.15. Sum-coincidence Spectrometry

12.2.5. Heavy Particle Spectrometry

12.2.7. Dual Scintillator Systems

13.1.6. Intermediate Energy Neutron Detection

13.4. Inorganic Glass Scintillators

13.5. Other Inorganic Scintillators

14.2. Inert Gases

14.2.10. Light Amplification by an Electric Field

14.3.2. Liquid Helium and Argon

References

Author Index

Volumes Published in the Series on Electronics and Instrumentation


Details

No. of pages:
684
Language:
English
Copyright:
© Pergamon 1964
Published:
Imprint:
Pergamon
eBook ISBN:
9781483156064

About the Author

J. B. Birks

About the Editor

D.W. Fry

L. Costrell

K. Kandiah

Ratings and Reviews