The Spectra and Dynamics of Diatomic Molecules - 1st Edition - ISBN: 9780124414563, 9780080517520

The Spectra and Dynamics of Diatomic Molecules

1st Edition

Revised and Enlarged Edition

Authors: Helene Lefebvre-Brion Robert Field
eBook ISBN: 9780080517520
eBook ISBN: 9780080517506
Paperback ISBN: 9780124414563
Imprint: Academic Press
Published Date: 1st April 2004
Page Count: 786
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST
× Read this ebook on your PC, Mac, Apple iOS and Andriod mobile devices and eReader

This ebook is protected by Adobe Content Server digital rights management.

For more information on how to use .acsm files please click the Ebook Format Help link.

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


This book is written for graduate students just beginning research, for theorists curious about what experimentalists actually can and do measure, and for experimentalists bewildered by theory. It is a guide for potential users of spectroscopic data, and uses language and concepts that bridge the frequency-and time-domain spectroscopic communities.

Key topics, concepts, and techniques include: the assignment of simple spectra, basic experimental techniques, definition of Born-Oppenheimer and angular momentum basis sets and the associated spectroscopic energy level patterns (Hund's cases), construction of effective Hamiltonian matrices to represent both spectra and dynamics, terms neglected in the Born-Oppenheimer approximation (situations intermediate between Hund's cases, spectroscopic perturbations), nonlinear least squares fitting, calculation and interpretation of coupling terms, semi-classical (WKB) approximation, transition intensities and interference effects, direct photofragmentation (dissociation and ionization) and indirect photofragmentation (predissociation and autoionization) processes, visualization of intramolecular dynamics, quantum beats and wavepackets, treatment of decaying quasi-eigenstates using a complex Heff model, and concluding with some examples of polyatomic molecule dynamics.

Students will discover that there is a fascinating world of cause-and-effect localized dynamics concealed beyond the reduction of spectra to archival molecular constants and the exact ab initio computation of molecular properties. Professional spectroscopists, kinetics, ab initio theorists will appreciate the practical, simplified-model, and rigorous theoretical approaches discussed in this book.

Key Features:

• A fundamental reference for all spectra of small, gas-phase molecules.

• It is the most up-to-d

Key Features

  • A fundamental reference for all spectra of small, gas-phase molecules.
  • It is the most up-to-date and comprehensive book on the electronic spectroscopy and dynamics of diatomic molecules.
  • The authors pioneered the development of many of the experimental methods, concepts, models, and computational schemes described in this book.


Physical chemists and chemical physicists in the area of molecular spectroscopy. Also, researchers in the applications areas of chemistry and materials science noted above.

Table of Contents

  • List of Tables
  • List of Figures
  • Preface
  • From the Preface to "Perturbations in the Spectra of Diatomic Molecules"
  • Chapter 1: Simple Spectra and Standard Experimental Techniques
    • 1.1 Rotation-Vibration-Electronic Spectra of Diatomic Molecules
    • 1.2 Experimental Techniques of Diatomic Molecule Spectroscopy
  • Chapter 2: Basic Models
    • 2.1 What Is a Perturbation?
    • 2.2 Structural Models
    • 2.3 Elementary Properties of Angular Momenta in Diatomic Molecules
    • 2.4 Estimation of Parameters in a Model Hamiltonian
  • Chapter 3: Terms Neglected in the Born-Oppenheimer Approximation
    • 3.1 The Born-Oppenheimer Approximation
    • 3.2 Basis Functions
    • 3.3 Electrostatic Perturbations
    • 3.4 Spin Part of the Hamiltonian
    • 3.5 Rotational Perturbations
  • Chapter 4: Methods of Deperturbation
    • 4.1 Variational Calculations
    • 4.2 The Van Vleck Transformation and Effective Hamiltonians
    • 4.3 Approximate Solutions
    • 4.4 Exact Solutions
    • 4.5 Typical Examples of Fitted Perturbations
  • Chapter 5: Interpretation of the Perturbation Matrix Elements
    • 5.1 Calculation of the Vibrational Factor
    • 5.2 Order of Magnitude of Electrostatic Perturbation Parameters: Interactions Between Valence and Rydberg States of the Same Symmetry
    • 5.3 Order of Magnitude of Spin Parameters
    • 5.4 Magnitudes of Rotational Perturbation Parameters
    • 5.5 Pure Precession Approximation
    • 5.6 R–Dependence of the Spin Interaction Parameters
    • 5.7 Beyond the Single-Configuration Approximation
    • 5.8 Identification and Location of Metastable States by Perturbation Effects
  • Chapter 6: Transition Intensities and Special Effects
    • 6.1 Intensity Factors
    • 6.2 Intensity Borrowing


No. of pages:
© Academic Press 2004
Academic Press
eBook ISBN:
eBook ISBN:
Paperback ISBN:

About the Author

Helene Lefebvre-Brion

Affiliations and Expertise

Laboratoire de Photophysique Moleculaire Universite Paris-Sud 91405 Orsay, France

Robert Field

Affiliations and Expertise

Department of Chemistry, Massachusetts Institute of Technology.

Ratings and Reviews