The Jacobson Radical of Group Algebras, Volume 135
1st Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
Ring-Theoretic Background. Group Algebras and Their Modules. The Jacobson Radical of Group Algebras: Foundations of the Theory. Group Algebras of p-Groups over Fields of Characteristic p. The Jacobson Radical and Induced Modules. The Loewy Length of Projective Modules. The Nilpotency Index. Radicals of Blocks. Bibliography. Index.
Description
Let G be a finite group and let F be a field. It is well known that linear representations of G over F can be interpreted as modules over the group algebra FG. Thus the investigation of ring-theoretic structure of the Jacobson radical J(FG) of FG is of fundamental importance. During the last two decades the subject has been pursued by a number of researchers and many interesting results have been obtained. This volume examines these results.
The main body of the theory is presented, giving the central ideas, the basic results and the fundamental methods. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, thus familiarity with basic ring-theoretic and group-theoretic concepts and an understanding of elementary properties of modules, tensor products and fields. A chapter on algebraic preliminaries is included, providing a survey of topics needed later in the book. There is a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.
Details
- No. of pages:
- 531
- Language:
- English
- Copyright:
- © North Holland 1987
- Published:
- 1st April 1987
- Imprint:
- North Holland
- eBook ISBN:
- 9780080872469
Ratings and Reviews
About the Author
G. Karpilovsky
Affiliations and Expertise
California State University, Department of Mathematics, Chico, CA, USA
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.