COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
The Fundamentals and Applications of Light-Emitting Diodes - 1st Edition - ISBN: 9780128196052, 9780128231616

The Fundamentals and Applications of Light-Emitting Diodes

1st Edition

The Revolution in the Lighting Industry

0.0 star rating Write a review
Authors: Sanjay J. Dhoble Govind Nair
Paperback ISBN: 9780128196052
eBook ISBN: 9780128231616
Imprint: Woodhead Publishing
Published Date: 9th July 2020
Page Count: 284
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Part 1: Fundamentals
1. Introduction to Luminescence
1.1. Characteristics and quality of light
1.2. Conceptual Background of Luminescence
1.3. Luminescence Mechanisms
1.3.1. Photoluminescence
1.3.2. Electroluminescence
1.4. Luminescence from Rare-earth ions and Transition metal ions
1.5. Historical Background
1.5.1. The advent of Light
1.5.2. The First Generation of Lighting
1.5.3. The Second Generation of Lighting
1.5.4. The Third Generation of Lighting
1.5.5. The Fourth Generation of Lighting

2. Fundamentals of LEDs
2.1. Overview of LEDs
2.2. Merits and opportunities
2.3. Considerations while using LEDs
2.4. Semiconductor Physics of LEDs
2.4.1. General Construction
2.4.2. Working Principle
2.5. Device Fabrication
2.5.1. Substrate materials
2.5.2. Packaging materials
2.5.3. Phosphors or Quantum dots
2.5.4. Encapsulation materials
2.5.5. Luminaires
2.6. Characteristics of LED phosphors
2.6.1. Temperature quenching
2.6.2. Luminous Efficacy
2.6.3. Color Rendering Index (CRI)
2.6.4. CIE Chromaticity coordinates
2.6.5. Correlated color temperature (CCT)
2.6.6. Quantum efficiency
2.6.7. Life Span

Part 2 : Materials
3. Semiconductor LEDs
3.1. Introduction
3.2. Growth Techniques
3.2.1. Vapor Phase Epitaxy
3.2.2. Molecular beam epitaxy
3.2.3. Metal Organic Chemical Vapor Deposition (MOCVD)
3.3. Semiconductor materials for LEDs
3.3.1. Si and Ge based alloys
3.3.2. III-Arsenides
3.3.3. III-Phosphides
3.3.4. III-Nitrides

4. Phosphor converted-LEDs (pc-LEDs) 
4.1. Phosphor
4.2. Dopant and its types
4.2.1. Activator
4.2.2. Co-activator
4.2.3. Sensitizer
4.3. Synthesis of Inorganic phosphors
4.3.1. Solid State Diffusion
4.3.2. Sol-Gel/Pechini
4.3.3. Combustion synthesis
4.3.4. Precipitation Method
4.3.5. Solvothermal Method
4.3.6. Microwave-assisted method
4.3.7. Sonochemical Synthesis
4.3.8. Template assisted method
4.3.9. Laser Ablation
4.3.10. Spray Pyrolysis
4.3.11. Microemulsions
4.3.12. Vapour Deposition
4.3.13. Colloidal Route
4.4. Red/Orange emitting phosphors
4.5. Yellow Emitting phosphors
4.6. Green Emitting phosphors
4.7. Blue emitting phosphors
4.8. White emitting phosphors
4.9. Color-tunable phosphors

5. Advanced variants of LEDs
5.1. Introduction
5.2. Quantum dot-LEDs (QD- LEDs)
5.3. Organic-LEDS (OLEDs)
5.4. Perovskite-LEDs (PeLEDs)
5.5. BioLEDs

Part 3: Applications
6. General lighting
6.1. Introduction
6.2. LEDs for lighting applications
6.2.1. Household lighting
6.2.2. Street lighting
6.2.3. Automobile lighting
6.3. Advantages of LED Lighting
6.4. Innovations in LED lighting

7. Digital communications and Display devices
7.1. Introduction
7.2. Digital Communications
7.2.1. Evolution of Communication technology
7.2.2. Future Prospects
7.3. Display Technology
7.3.1. Advancement in Display devices
7.3.2. Future prospects in Display Technology

8. Biomedical applications
8.1. Introduction
8.2. Skin Rejuvenation
8.3. Photodynamic Therapy
8.4. Cure for Mental Disorders
8.5. Cure for Other Disorders
8.6. Food Safety
8.7. Other Health and Environmental Benefits

9. Horticultural applications
9.1. Introduction
9.2. Plant’s Response To Light
9.3. LED versus Other Types of Grow-Lights
9.3.1. Incandescent Lamps
9.3.2. Fluorescent Lamps
9.3.3. High Intensity Discharge (HID)
9.3.4. Metal Halide (MH)
9.3.5. High Pressure Sodium (HPS)
9.3.6. Plasma
9.3.7. Induction Light
9.4. LEDs in Horticulture
9.5. Significance of LED Grow-Lights
9.6. Current Market Scenario

10. Current trends and Innovations
10.1. Introduction
10.2. Overview on the past and present trends in LEDs
10.3. Innovations in the structure and designing of LEDs
10.4. Innovations in the applications of LEDs
10.5. Innovations in fashion
10.6. Current Scenario of LED Market
10.7. Limitations and Challenges
10.8. Future Prospects and scope


The Fundamentals and Applications of Light-Emitting Diodes: The Revolution in the Lighting Industry examines the evolution of LEDs, including a review of the luminescence process and background on solid state lighting. The book emphasizes phosphor-converted LEDs that are based on inorganic phosphors but explores different types of LEDs based on inorganic, organic, quantum dots, perovskite-structured materials, and biomaterials. A detailed description is included about the diverse applications of LEDs in fields such as lighting, displays, horticulture, biomedicine, and digital communication, as well as challenges that must be solved before using LEDs in commercial applications.

Traditional light sources are fast being replaced by light-emitting diodes (LEDs). The fourth generation of lighting is completely dominated by LED luminaires. Apart from lighting, LEDs have extended their hold on other fields, such as digital communications, horticulture, medicine, space research, art and culture, display devices, and entertainment. The technological promises offered by LEDs have elevated them as front-runners in the lighting industry.

Key Features

  • Presents a concise overview of different types of light-emitting diodes (LEDs) based on inorganic phosphors, organic materials, quantum dots, perovskite-structured materials, and biomaterials
  • Includes a discussion of current and emerging applications in lighting, communications, horticulture, and medical fields
  • Addresses fundamentals, luminescence mechanisms, and key optical materials, including synthesis methods


Materials Scientists and Engineers in academia and R&D


No. of pages:
© Woodhead Publishing 2020
9th July 2020
Woodhead Publishing
Paperback ISBN:
eBook ISBN:

Ratings and Reviews

About the Authors

Sanjay J. Dhoble

Prof. Sanjay J. Dhoble obtained his M.Sc. degree in Physics from Rani Durgavati University, Jabalpur, India in 1988. He obtained his Ph.D. degree in 1992 in Solid State Physics from Nagpur University, Nagpur. Dr. S.J. Dhoble is presently working as a Professor in the Department of Physics, R.T.M. Nagpur University, Nagpur, India. During his research career, he has worked on the synthesis and characterization of solid-state lighting materials, as well as the development of radiation dosimetry phosphors using thermoluminescence techniques and fly ash. Dr. Dhoble published/filed 19 patents and more than 586 research papers published in Scopus indexing journals. He has authored and edited numerous books on lighting materials, OLEDs, energy materials, and other related topics. Dr. Dhoble is an editor of the journal ‘Luminescence: The Journal of Biological and Chemical Luminescence’, John Wiley & Sons Ltd. Publication (Impact Factor: 1.691). He is also recipient of India’s Top Faculty Research Award-2018 by Careers 360, received in Teen Murti Bhawan, New Delhi, for the top ten researchers in India in Physics on the basis of research papers published in Scopus research database in session 2017-2018, on 20th March 2018.

Affiliations and Expertise

Professor, Department of Physics, R.T.M. Nagpur University, Nagpur, India

Govind Nair

Dr. Govind B. Nair obtained his Masters degree in Physics from the R.T.M. Nagpur University, Nagpur, India. He received two gold medals for securing first rank in his Masters degree. He pursued his PhD from R.T.M. Nagpur University under the guidance of Prof. S. J. Dhoble. He is currently a Post-Doctoral researcher at the University of Free State, Bloemfontein, South Africa. He was awarded with an INSPIRE Fellowship, which is a prestigious fellowship programme conducted by the Department of Science and Technology (DST), India. His area of research includes the synthesis and characterization of optical materials, theoretical analysis of luminescence processes, structural analysis of materials, etc.

Affiliations and Expertise

University of Free State, Bloemfontein, South Africa