Description

The Finite Element Method for Solid and Structural Mechanics is the key text and reference for engineers, researchers and senior students dealing with the analysis and modeling of structures, from large civil engineering projects such as dams to aircraft structures and small engineered components.

This edition brings a thorough update and rearrangement of the book’s content, including new chapters on:

  • Material constitution using representative volume elements
  • Differential geometry and calculus on manifolds
  • Background mathematics and linear shell theory

Focusing on the core knowledge, mathematical and analytical tools needed for successful structural analysis and modeling, The Finite Element Method for Solid and Structural Mechanics is the authoritative resource of choice for graduate level students, researchers and professional engineers.

Key Features

  • A proven keystone reference in the library of any engineer needing to apply the finite element method to solid mechanics and structural design.
  • Founded by an influential pioneer in the field and updated in this seventh edition by an author team incorporating academic authority and industrial simulation experience.
  • Features new chapters on topics including material constitution using representative volume elements, as well as consolidated and expanded sections on rod and shell models.

Readership

Mechanical, Civil, Structural, Aerospace and Manufacturing Engineers, applied mathematicians and computer aided engineering software developers

Table of Contents

Author Biography

Dedication

List of Figures

List of Tables

Preface

Chapter 1. General Problems in Solid Mechanics and Nonlinearity

Abstract

1.1 Introduction

1.2 Small deformation solid mechanics problems

1.3 Variational forms for nonlinear elasticity

1.4 Weak forms of governing equations

1.5 Concluding remarks

References

Chapter 2. Galerkin Method of Approximation: Irreducible and Mixed Forms

Abstract

2.1 Introduction

2.2 Finite element approximation: Galerkin method

2.3 Numerical integration: Quadrature

2.4 Nonlinear transient and steady-state problems

2.5 Boundary conditions: Nonlinear problems

2.6 Mixed or irreducible forms

2.7 Nonlinear quasi-harmonic field problems

2.8 Typical examples of transient nonlinear calculations

2.9 Concluding remarks

References

Chapter 3. Solution of Nonlinear Algebraic Equations

Abstract

3.1 Introduction

3.2 Iterative techniques

3.3 General remarks: Incremental and rate methods

References

Chapter 4. Inelastic and Nonlinear Materials

Abstract

4.1 Introduction

4.2 Tensor to matrix representation

4.3 Viscoelasticity: History dependence of deformation

4.4 Classical time-independent plasticity theory

4.5 Computation of stress increments

4.6 Isotropic plasticity models

4.7 Generalized plasticity

4.8 Some examples of plastic computation

4.9 Basic formulation of creep problems

4.10 Viscoplasticity: A generalization

4.11 Some special problems of brittle materials

4.12 Nonuniqueness and localization in elasto-plastic deformations

4.13 Nonlinear quasi-harmonic field problems

4.14 Concluding remarks

References

Chapter 5. Geometrically Nonlinear Problems: Finite Defo

Details

No. of pages:
672
Language:
English
Copyright:
© 2014
Published:
Imprint:
Butterworth-Heinemann
Print ISBN:
9781856176347
Electronic ISBN:
9780080951362

Reviews

"...most up to date and comprehensive reference yet on the finite element method for engineers and mathematicians...part of a collection of 3 other books on the Finite Element Method... Renowned for their scope, range and authority..."--MCADCafe, March 12, 2014

"Focusing on the core knowledge, mathematical and analytical tools needed for successful structural analysis and modeling,The Finite Element Method for Solid and Structural Mechanics is the authoritative resource of choice for graduate level students, researchers and professional engineers."--MCADCafe.com, March 12, 2014

"...this is a book that you simply cannot afford to be without."--International Journal of Numerical Methods in Engineering