COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Swarm Intelligence - 1st Edition - ISBN: 9781558605954, 9780080518268

Swarm Intelligence

1st Edition

Authors: Russell Eberhart Yuhui Shi James Kennedy
Hardcover ISBN: 9781558605954
eBook ISBN: 9780080518268
Paperback ISBN: 9781493303588
Imprint: Morgan Kaufmann
Published Date: 26th March 2001
Page Count: 512
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents


Part 1: Foundations Life and Intelligence Optimization by Trial and Error On our Nonexistence as Entities Evolutionary Computation Theory and Paradigms Humans - Actual, Imagined and Implied Thinking is Social

Part 2: Particle Optimization and Collective Intelligence The Binary Particle Swarm Variations and Comparisons; Applications Implications and Speculations Conclusions


Traditional methods for creating intelligent computational systems have privileged private "internal" cognitive and computational processes. In contrast, Swarm Intelligence argues that human intelligence derives from the interactions of individuals in a social world and further, that this model of intelligence can be effectively applied to artificially intelligent systems. The authors first present the foundations of this new approach through an extensive review of the critical literature in social psychology, cognitive science, and evolutionary computation. They then show in detail how these theories and models apply to a new computational intelligence methodology—particle swarms—which focuses on adaptation as the key behavior of intelligent systems. Drilling down still further, the authors describe the practical benefits of applying particle swarm optimization to a range of engineering problems. Developed by the authors, this algorithm is an extension of cellular automata and provides a powerful optimization, learning, and problem solving method.

This important book presents valuable new insights by exploring the boundaries shared by cognitive science, social psychology, artificial life, artificial intelligence, and evolutionary computation and by applying these insights to the solving of difficult engineering problems. Researchers and graduate students in any of these disciplines will find the material intriguing, provocative, and revealing as will the curious and savvy computing professional.

Key Features

  • Places particle swarms within the larger context of intelligent adaptive behavior and evolutionary computation.
  • Describes recent results of experiments with the particle swarm optimization (PSO) algorithm
  • Includes a basic overview of statistics to ensure readers can properly analyze the results of their own experiments using the algorithm.
  • Support software which can be downloaded from the publishers website, includes a Java PSO applet, C and Visual Basic source code.


Computer scientist; electrical engineers; artificial intelligence researchers; cognitive scientist and social psychologists; computing professionals.


No. of pages:
© Morgan Kaufmann 2001
26th March 2001
Morgan Kaufmann
Hardcover ISBN:
eBook ISBN:
Paperback ISBN:


Well received the September UK Game industry show. Recent publicity includes a mention in Visual Basic Design Magazine, June issue.

Ratings and Reviews

About the Authors

Russell Eberhart

Russ Eberhart is Associate Dean of Research at Purdue School of Engineering and Technology in Indianapolis, IN. He is the author of Neural Network PC Tools (Academic Press), a leading book in the field of Neural Networks. Among his credits, he is the former President of the IEEE Neural Networks Council.

Affiliations and Expertise

Purdue School of Engineering

Yuhui Shi

Yuhui Shi received the Ph.D. degree in electrical engineering from Southeast University, China, in 1992. Since then, he has worked at several universities including the Department of Radio Engineering, Southeast University, Nanjing, China, the Department of Electrical & Computer Engineering, Concordia University, Montreal, Canada, the Department of Computer Science, Australian Defense Force Academic, Canberra, Australia, the Department of Computer Science, Korean Advanced Institute of Science and Technology, Taejon, Korea, and the Department of Electrical Engineering, Purdue School of Engineering and Technology, Indianapolis, Indiana, USA. He is currently with Electronic Data Systems, Inc., Kokomo, Indiana, USA, as an Applied Specialist. His main interests include artificial neural networks, evolutionary computation, fuzzy logic systems and their industrial applications.

Dr. Shi was a co-presenter of the tutorial, Introduction to Computation Intelligence, at the 1998 WCCI Conference, Anchorage, Alaska, and presented the tutorial, Evolutionary Computation and Fuzzy Systems, at the 1998 ANNIE Conference, St. Louis. He is the technical co-chair of 2001 Particle Swarm Optimization Workshop, Indianapolis, Indiana.

Affiliations and Expertise

Electronic Data Systems, Inc.

James Kennedy

James Kennedy is a social psychologist who works in survey methods at the US Department of Labor. He has conducted basic and applied research into social effects on cognition and attitude. Dr. Kennedy has worked with the particle swarm computer model of social influence in artificial communities since 1994, presenting research in both the computer-science and social-science publications.

Affiliations and Expertise

US Department of Labor