By some measure the most widely produced chemical in the world today, sulfuric acid has an extraordinary range of modern uses, including phosphate fertilizer production, explosives, glue, wood preservative and lead-acid batteries. An exceptionally corrosive and dangerous acid, production of sulfuric acid requires stringent adherence to environmental regulatory guidance within cost-efficient standards of production.

This work provides an experience-based review of how sulfuric acid plants work, how they should be designed and how they should be operated for maximum sulfur capture and minimum environmental impact. Using a combination of practical experience and deep physical analysis, Davenport and King review sulfur manufacturing in the contemporary world where regulatory guidance is becoming ever tighter (and where new processes are being required to meet them), and where water consumption and energy considerations are being brought to bear on sulfuric acid plant operations. This 2e will examine in particular newly developed acid-making processes and new methods of minimizing unwanted sulfur emissions.

The target readers are recently graduated science and engineering students who are entering the chemical industry and experienced professionals within chemical plant design companies, chemical plant production companies, sulfuric acid recycling companies and sulfuric acid users. They will use the book to design, control, optimize and operate sulfuric acid plants around the world.

Key Features

Unique mathematical analysis of sulfuric acid manufacturing processes, providing a sound basis for optimizing sulfuric acid manufacturing processes.

Analysis of recently developed sulfuric acid manufacturing techniques suggests advantages and disadvantages of the new processes from the energy and environmental points of view.

Analysis of tail gas sulfur capture processes indicates the best way to combine sulfuric acid making and tailgas sulfur-capture processes from the energy and environmental points of view.

Draws on industrial connections of the authors through years of hands-on experience in sulfuric acid manufacture.


Chemists, Chemical Engineers, Industrial Engineers, Chemical plant operators, chemical manufacturers; Any researcher, scientist, and student with an interest in sulfuric acid.

Table of Contents


1. Overview

1.1 Catalytic oxidation of SO2 to SO3

1.2 H2SO4 production

1.3 Industrial flowsheet

1.4 Sulfur burning

1.5 Metallurgical offgas

1.6 Spent acid regeneration

1.7 Sulfuric acid product

1.8 Recent developments

1.9 Alternative processes

1.10 Summary


Suggested reading

2. Production and consumption

2.1 Uses

2.2 Acid plant locations

2.3 Price

2.4 Summary


Suggested reading

3. Sulfur burning

3.1 Objectives

3.2 Sulfur

3.3 Molten sulfur delivery

3.4 Sulfur atomizers and sulfur burning furnaces

3.5 Product gas

3.6 Heat recovery boiler

3.7 Summary


Suggested reading

4. Metallurgical offgas cooling and cleaning

4.1 Initial and final SO2 concentrations

4.2 Initial and final dust concentrations

4.3 Offgas cooling and heat recovery

4.4 Electrostatic collection of dust

4.5 Water scrubbing (Tables 4.5 and 4.6)

4.6 H2O(g) removal from scrubber exit gas (Tables 4.5 and 4.6)

4.7 Summary


Suggested reading

5. Regeneration of spent sulfuric acid

5.1 Spent acid compositions

5.2 Spent acid handling

5.3 Decomposition

5.4 Decomposition furnace product

5.5 Optimum decomposition furnace operating conditions

5.6 Preparation of offgas for SO2 oxidation and H2SO4 making

5.7 Summary


Suggested Reading

6. Dehydrating air and gases with strong sulfuric acid

6.1 Chapter objectives

6.2 Dehydration with strong sulfuric acid

6.3 Dehydration reaction mechanism

6.4 Residence times

6.5 Recent adva


No. of pages:
© 2013
Print ISBN:
Electronic ISBN:


"The 2006 first edition has been updated with seven new chapters, and one additional author, Moats…They consider such topics as metallurgical offgas cooling and cleaning, the catalytic oxidation of S2 to S3, the second catalyst bed heatup path, the three catalyst bed acid plant, acid temperature and control and heat recovery, wet sulfuric acid process fundamentals, and the cost of sulfuric acid production."--Reference & Research Book News, December 2013