Structural Geology and Personal Computers - 1st Edition - ISBN: 9780080424309, 9780080541938

Structural Geology and Personal Computers, Volume 15

1st Edition

Editors: D.G. De Paor
Hardcover ISBN: 9780080424309
eBook ISBN: 9780080541938
Imprint: Pergamon
Published Date: 17th December 1996
Page Count: 524
Tax/VAT will be calculated at check-out
190.00
115.00
143.00
190.00
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Table of Contents

I: Computer-Aided Learning. A computer laboratory for structural geologists (D.G. De Paor). GeologiCAL structures – multimedia presentation and modelling software (P.R. James, I. Clark). Courseware: rock deformation and geological structures (D. Byron, B. Sowerbutts). A structural study of the North Sea petroleum traps using hypercard (I. Allison). Visualization of basic structural geometries with Structure Lab 1 (D.G. De Paor, C. Simpson). Using graphics programs to help students understand strain (B.J. Tewksbury). Visualization of deformation: computer applications for teaching (B. Tikoff, H. Fossen). Computer-aided understanding of deformation microstructures (C. Simpson, D.G. De Paor). II: Microstructural Analysis. Image analysis in structural geology using NIH image (M.G. Bjørnerud, B. Boyer). Synkinematic microscopic analysis using NIH image (Youngdo Park). Image analysis of microstructures in natural and experimental samples (P. Bons, M.W. Jessell). Calculation of rock properties from pole figures using LabView (J. Lapierre et al.). III: Analysis of Orientation Data. SpheriCAD: an autoCAD program for analysis of structural orientation data (C.E. Jacobson). A computer program to print inclined spherical projections (J. Starkey). Presentation of orientation data in spherical projection (J. Starkey). Microcomputers and the optical universal stage (J. Starkey). Stereonet applications for Windows and Macintosh (D.G. De Paor). Manipulation of orientation data using spreadsheet software (G. Tolson, F. Correa-Mora). IV: Strain and Kinematic Analysis. Modeling growth and rotation of porphyroblasts and inclusion trails (E. Beam). Simulated pressure fringes, vorticity, and progressive deformation (Kyuichi Kanagawa). Flinn diagram construction on Macintosh computers (J. Zimmerman). A modified data input procedure for the Fry 5.8 strain analysis application (J. Zimmerman). V: Mathematical and Physical Modeling. Review of theorist: a symbolic mathematics and graphics application (A.R. Bobyarchick). Structural geophysics: integrated structural and geophysical modelling (M.W. Jessell, R.K. Valenta). Principal stress orientations from faults: a C++ program (B. Ciscato). A spring-network model of fault-system evolution (Norihiro Nakamura et al.). Linear-elastic crack models of jointing and faulting (J.G. Crider et al.). Bézier curves and geological design (D.G. De Paor). VI: Structural Mapping and GIS. Digital terrain models and the visualization of structural geology (R.N. Spark, P.F. Williams). Computation of orientations for GIS – the 'roll' of Quaternions (D.G. De Paor). Computerized geologic map compilation (M.G. Adams et al.). Fieldlog: GIS software as a mapping aid for structural geologists (M.I. Matsah, T. Kusky). Computerized cross section balance and restoration (R.H. Groshong Jr, J.-L. Epard). Bitmap rotation, raster shear, and block diagram construction (D.G. De Paor). Subject Index.


266 illus., 448 lit. refs.


Description

I: Computer-Aided Learning. A computer laboratory for structural geologists (D.G. De Paor). GeologiCAL structures – multimedia presentation and modelling software (P.R. James, I. Clark). Courseware: rock deformation and geological structures (D. Byron, B. Sowerbutts). A structural study of the North Sea petroleum traps using hypercard (I. Allison). Visualization of basic structural geometries with Structure Lab 1 (D.G. De Paor, C. Simpson). Using graphics programs to help students understand strain (B.J. Tewksbury). Visualization of deformation: computer applications for teaching (B. Tikoff, H. Fossen). Computer-aided understanding of deformation microstructures (C. Simpson, D.G. De Paor). II: Microstructural Analysis. Image analysis in structural geology using NIH image (M.G. Bjørnerud, B. Boyer). Synkinematic microscopic analysis using NIH image (Youngdo Park). Image analysis of microstructures in natural and experimental samples (P. Bons, M.W. Jessell). Calculation of rock properties from pole figures using LabView (J. Lapierre et al.). III: Analysis of Orientation Data. SpheriCAD: an autoCAD program for analysis of structural orientation data (C.E. Jacobson). A computer program to print inclined spherical projections (J. Starkey). Presentation of orientation data in spherical projection (J. Starkey). Microcomputers and the optical universal stage (J. Starkey). Stereonet applications for Windows and Macintosh (D.G. De Paor). Manipulation of orientation data using spreadsheet software (G. Tolson, F. Correa-Mora). IV: Strain and Kinematic Analysis. Modeling growth and rotation of porphyroblasts and inclusion trails (E. Beam). Simulated pressure fringes, vorticity, and progressive deformation (Kyuichi Kanagawa). Flinn diagram construction on Macintosh computers (J. Zimmerman). A modified data input procedure for the Fry 5.8 strain analysis application (J. Zimmerman). V: Mathematical and Physical Modeling. Review of theorist: a symbolic mathematics and graphics application (A.R. Bobyarchick). Structural geophysics: integrated structural and geophysical modelling (M.W. Jessell, R.K. Valenta). Principal stress orientations from faults: a C++ program (B. Ciscato). A spring-network model of fault-system evolution (Norihiro Nakamura et al.). Linear-elastic crack models of jointing and faulting (J.G. Crider et al.). Bézier curves and geological design (D.G. De Paor). VI: Structural Mapping and GIS. Digital terrain models and the visualization of structural geology (R.N. Spark, P.F. Williams). Computation of orientations for GIS – the 'roll' of Quaternions (D.G. De Paor). Computerized geologic map compilation (M.G. Adams et al.). Fieldlog: GIS software as a mapping aid for structural geologists (M.I. Matsah, T. Kusky). Computerized cross section balance and restoration (R.H. Groshong Jr, J.-L. Epard). Bitmap rotation, raster shear, and block diagram construction (D.G. De Paor). Subject Index.


266 illus., 448 lit. refs.

Readership

For structural geologists, computer oriented geoscientists, microscopists, mappers and modellers working in academia and industry.


Details

No. of pages:
524
Language:
English
Copyright:
© Pergamon 1996
Published:
Imprint:
Pergamon
eBook ISBN:
9780080541938

Reviews

@from:Cees Passchier, Mainz, Germany @qu:....This book is a gold mine of information on the optimal use of PCs or Macs in teaching and research...this is a very useful book for all geologists who teach and do research in structural geology...the book contains so many ideas and things-you-did-not-know-existed that it is a welcome tool in structural geology, and may spawn a lot of research topics for graduate students and help to improve teaching. @source:Journal of Structural Geology, Vol. 19, No. 9. 1997 @from:Dr Liu Yuanchao and Prof. Wang Chengshan, PRC @qu:.... Personal computers are becoming an important tool and renewing the research concept and approach of scientists world-wide. Therefore, structural geologists undoubtedly welcome the publication of this book. @source:Episodes


About the Editors

D.G. De Paor Editor

Affiliations and Expertise

Department of Earth & Planetary Sciences, Harvard University, USA