COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Spatial Analysis Using Big Data - 1st Edition - ISBN: 9780128131275, 9780128131329

Spatial Analysis Using Big Data

1st Edition

Methods and Urban Applications

Editors: Yoshiki Yamagata Hajime Seya
Paperback ISBN: 9780128131275
eBook ISBN: 9780128131329
Imprint: Academic Press
Published Date: 2nd November 2019
Page Count: 302
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Spatial Analysis Using Big Data: Methods and Urban Applications helps readers understand the most powerful, state-of-the-art spatial econometric methods, focusing particularly on urban research problems. The methods represent a cluster of potentially transformational socio-economic modeling tools that allow researchers to capture real-time and high-resolution information to potentially reveal new socioeconomic dynamics within urban populations. Each method, written by leading exponents of the discipline, uses real-time urban big data to solve research problems in spatial science. Urban applications of these methods are provided in unsurpassed depth, with chapters on surface temperature mapping, view value analysis, community clustering and spatial-social networks, among many others.

Key Features

  • Reviews some of the most powerful and challenging modern methods to study big data problems in spatial science
  • Provides computer codes written in R, MATLAB and Python to help implement methods
  • Applies these methods to common problems observed in urban and regional economics


Graduate and PhD students and other early career researchers who seek to conduct research on urban communities using spatial econometric methods, obviously including spatial statistics and spatial econometrics, but also GIS, computer science, environmental science, and transportation

Table of Contents

Part 1. Introduction

Part 2. Methods for big spatial data analysis
1. Spatial statistics and data assimilation
2. Spatial and temporal statistical models
3. Spatial econometrics and social interaction models
4. Spatial clustering models
5. Complex network models
6. Spatial mobility data models
7. Land use and transport models
8. Land use scenario visualization tools

Part 3. Urban applications of big spatial data analysis
9. Surface temperature mapping for heat wave risk management
10. Spatial heat-wave assessments using Geo-tagged Twitter data
11. Assimilation of cell phone mobility data for agent based simulation
12. Spatial-social network analysis of the patent data
13. CO2 emission mapping using human sensor data
14. Optimal community clustering for sharing economy
15. View value analysis using 3D urban structure data
16. Big Spatial Data Analysis: case studies in New York
17. Big Spatial Data Analysis: case studies in London


No. of pages:
© Academic Press 2020
2nd November 2019
Academic Press
Paperback ISBN:
eBook ISBN:

About the Editors

Yoshiki Yamagata

Yoshiki Yamagata is the Head of Global Carbon Project International Office at the Center for Global Environmental Research, National Institute for Environmental Studies.He received his Ph.D. degree in System Science from the University of Tokyo, Japan.His research interests include Urban Resilience, Urban Analytics, and Urban Systems.

Affiliations and Expertise

Head of Global Carbon Project International Office at the Center for Global Environmental Research, National Institute for Environmental Studies, Japan

Hajime Seya

Hajime Seya received his Ph.D. degree in engineering from University of Tsukuba. His research interests include urban transportation planning, regional science, geographical information science, integrated land-use-transport modeling, and spatial statistics/econometrics. Seya has published 33 papers.

Affiliations and Expertise

Associate Professor, Department of Civil Engineering, Faculty of Engineering, Graduate School of Engineering, Kobe University, Japan

Ratings and Reviews