As the need for geographical data rapidly expands in the 21st century, so too do applications of small-format aerial photography for a wide range of scientific, commercial and governmental purposes. Small-format Aerial Photography (SFAP) presents basic and advanced principles and techniques with an emphasis on digital cameras. Unmanned platforms are described in considerable detail, including kites, helium and hot-air blimps, model airplanes, and paragliders. Several case studies, primarily drawn from the geosciences, are presented to demonstrate how SFAP is actually used in various applications. Many of these integrate SFAP with ground-based investigations as well as conventional large-format aerial photography, satellite imagery, and other kinds of geographic information.

Key Features

  • Full-color photographs throughout
  • Case studies from around the globe
  • Techniques presented allow for image resolution impossible to match via traditional aerial photography or satellite datasets
  • Glossary clarifies key terms


Researchers and students in the fields of remote sensing, GIS, resource management, and aerial photography

Table of Contents


Part I

Chapter 1: Introduction to small-format aerial photography

1-1. Overview

1-2. Brief history

1-2.1. 19th century

1-2.2. 20th century

1-3. Photography and imagery

1-4. Conventional aerial photography

1-5. Small-format aerial photography

1-6. Summary

Chapter 2: Basic principles of SFAP

2-1. Remote sensing

2-1.1. Ideal remote sensing

2-1.2. Actual SFAP

2-2. Common aspects of SFAP

2-2.1. Image vantage

2-2.2. Photographic scale and resolution

2-2.3. Relief displacement

2-2.4. Stereoscopic images

2-3. Photographic storage

2-4. Summary

Chapter 3: Photogrammetry

3-1. Introduction

3-2. Geometry of single photographs

3-2.1. Vertical photography

3-2.2. Tilted photography

3-2.3. Interior orientation

3-2.4. Exterior orientation

3-3. Geometry of stereophotographs

3-3.1. Principle of stereoscopic viewing

3-3.2. Base-height ratio and stereoscopic coverage

3-3.3. 3D measurements from stereomodels

3-3.4. Creating stereomodels with aerial triangulation by bundle-block adjustment

3-4. Quantitative analysis of photographs

3-4.1. Measuring and mapping from single photographs

3-4.2. Manual measuring and mapping from stereomodels

3-4.3. Automatic DEM extraction from stereomodels

3-5. Summary

Chapter 4: Lighting and atmospheric conditions

4-1. Introduction

4-2. Multiview-angle effects

4-3. Bidirectional reflectance distribution function

4-4. Multispectral effects

4-5. Latitude and seasonal conditions

4-6. Clouds

4-7. Shadows

4-8. Summary

Chapter 5: Photographic composition

5-1. Introduction

5-2. Basic elements of photographic c


No. of pages:
© 2010
Elsevier Science
eBook ISBN:
Print ISBN:
Print ISBN:

About the authors

James Aber

Affiliations and Expertise

Emporia State University, Kansas, USA

Irene Marzolff

Affiliations and Expertise

Johann Wolfgang Goethe University, Frankfurt am Main, Germany

Johannes Ries

Affiliations and Expertise

Trier University, Trier, Germany