Simulation of Power System with Renewables - 1st Edition - ISBN: 9780128111871

Simulation of Power System with Renewables

1st Edition

Authors: Linash Kunjumuhammed Stephanie Kuenzel Bikash Pal
Paperback ISBN: 9780128111871
Imprint: Academic Press
Published Date: 1st October 2019
Page Count: 250
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Simulation of Power System with Renewables provides details on the modelling and efficient implementation of MATLAB, particularly with a renewable energy driven power system. The book presents a step-by-step approach to modelling implementation, including all major components used in current power systems operation, giving the reader the opportunity to learn how to gather models for conventional generators, wind farms, solar plants, HVDC links, and FACTS control devices. Users will find this to be a central resource for modelling, building and simulating renewable power systems, including discussions on its limitations, assumptions on the model, and the implementation and analysis of the system.

Key Features

  • Presents worked examples and equations in each chapter that address system limitations and flexibility
  • Provides step-by-step guidance for building and simulating models with required data
  • Contains case studies on a number of devices, including FACTS, HVDC systems, and renewable generation


Power system engineers and researchers, electrical engineers and engineering researchers, solar energy engineers and those working in the implementation of efficient power systems

Table of Contents

Purpose of the book and guide on how to use the book

1. Introduction
Introduction to power systems, recent progress, issues and challenges

2. Network modelling
Discussion of different types of network representation (Z , dynamic or EMTP)
Admittance and impedance model of three phase systems
Modelling of Transformer with off-nominal taps
Vector approach in Simulink
Power flow computation.
Study: Power flow result (Req. II)

3. Synchronous machine modelling
Description of different synchronous machine models and assumption used
Description and key equations of synchronous machine model in d-q reference
Step-by-step procedure for building Simulink blocks
Study: SMIB test system time domain results (Req. II - III)

4. Analysis and controller design ideas
Eigenvalue, Eigenvectors, participation factors, modal controllability, observability, residue, transfer function, singular value decomposition, matrix norms
Control design from a plant model
Study: SMIB test system modal results (Req. II - IV)

5. Load modelling
Discussion of different types of load representation (ZIP and dynamic)
Description, key equations and integration of ZIP model
Study: Four machine system model results (Req. II - V)

6. Modelling of wind power
Type 1, Type 2 , Type 3 and Type 4 wind turbine generator (WTG) models turbine and gear box models, pitch control model, modelling for Cp-curve Simulation
Study: Wind system model results (Req. II - VI)

7. Modelling of solar generation
Discussion on methods of solar power generation
Modelling of solar generation for network power flow and stability studies
Study: Solar system model results (Req. II - V, VII)

8. Modelling of FACTS devices
Approach to build static VAR compensator (SVC), STATCOM, Thyristor-Controlled Series Compensation (TCSC) models and phase shifter /quadrature booster model
Approach to integrate models into the four machines system
Study: Facts model study results (Req. II - V, VII)

9. HVDC system modelling and simulation
HVDC system model description
Integration into the small multi-machine system model
ACDC power flow
Study: HVDC model study results (Req. II - V, IX)

10. Study of Inter-area oscillations in power system
Description of inter-area oscillations and their significance in power systems
Study: Case studies of inter-area oscillation using FACTS devices, HVDC and renewable generation. (Req. II - X)


No. of pages:
© Academic Press 2020
Academic Press
Paperback ISBN:

About the Author

Linash Kunjumuhammed

is Research Associate in the Control and Power Research Group at the Department of Electrical and Electronic Engineering at Imperial College London. He received the B.Tech. degree from Mahatma Gandhi University, India, the M.S. degree from the Indian Institute of Technology Madras, India, and the Ph.D. degree from Imperial College London, U.K., in 2002, 2006, and 2012, respectively

Affiliations and Expertise

Research Associate, Department of Electrical and Electronic Engineering, Control and Power Research Group, Imperial College London, UK

Stephanie Kuenzel

completed an MEng degree in Electrical and Electronic Engineering at Imperial College London between 2006 and 2010. She was awarded a Power Academy Scholarship, being partnered with National Grid, UK. Through this scheme she gained work experience at multiple National Grid offices (Warwick, Leeds and Wokingham). Between 2010 and 2014 she did a PhD at Imperial College, titled “Modelling and control of an ACDC system with significant generation from wind”.

Affiliations and Expertise

MEng degree in Electrical and Electronic Engineering, Imperial College London

Bikash Pal

Dr. Bikash C. Pal is a professor of power systems at ICL. He has published approximately 80 IEEE Transactions papers and coauthored two books. Professor Pal is a Fellow of the IEEE for his contributions to power system stability and control and is Series Editor of Elsevier’s Sustainable Energies. He previously served as Editor-in-Chief for IEEE Transactions on Sustainable Energy and IET Generation, Transmission and Distribution.

Affiliations and Expertise

Professor of Power Systems, Imperial College London, UK

Ratings and Reviews