
Self-assembling Biomaterials
Molecular Design, Characterization and Application in Biology and Medicine
Description
Key Features
- Explores both theoretical and practical aspects of self-assembly in biomaterials
- Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials
- Examines the use of dynamic self-assembling biomaterials
Readership
Materials scientists, biomedical engineers, chemists working in the field of soft-matter, biomaterials and stem cells for tissue engineering
Table of Contents
1. Self-assembling biomaterials: beginnings and progress over the past decade
Part 1 Molecular building blocks for self-assembly
2. Designing peptides for self-assembling biomaterials with controlled mechanical and biological performance
3. Engineering silk fibroin for hydrogel self-assembly
4. Elastin-like proteins – modular design for self-assembly
5. Sweet building blocks for self-assembling biomaterials with molecular recognition
6. Peptoid self-assembly and opportunities for biomaterials and biointerfaces
7. Lipid bolaamphiphiles for fabricating membrane-mimetic biomaterials
8. Self-assembling protein-DNA hybrid molecules as building blocks for complex biomaterials
9. Biomaterials based on ureido-pyrimidinone (UPy) and benzene-1,3,5-tricarboxamide (BTAs) supramolecular polymers
10. Self-assembling of biomaterials using host-guest chemistryPart 2 Unique properties of self-assembling biomaterials: blurring the frontiers between biomaterials and biology
11. Adaptive supramolecular biomaterials through non-equilibrium self-assemblyPart 3 Nanoscale characterization of self-assembling biomaterials
12. Unveiling complex structure and dynamics in supramolecular biomaterials using super-resolution microscopy
13. Probing local molecular dynamics in self-assembling systems with electron paramagnetic resonance (EPR) spectroscopy
14. Small angle X-ray scattering (SAXS) to study spatial arrangement in self-assembled biomaterials
15. Studying nanoscale interactions in self-assembling systems through molecular simulationsPart 4 Mechanisms of self-assembly: controlling driving forces and boundaries for self-assembly across scales
16. Magnetic fields to align peptide assemblies and provide directionality in biomaterials
17. Using confined environments to control the shape and size of assemblies
18. Engineering dynamic self-assembling biomaterials at the interface
19. Enzymatic mediated self-assemblyPart 5 Applications of self-assembling biomaterials
20. Recreating stem cell niches using self-assembling biomaterials
21. Bioactive self-assembling scaffolds for regenerative medicine
22. Functionalization of self-assembling peptides for neural tissue engineering
23. Self-assembling biomaterials as nanocarriers for the targeted delivery of drugs for cancer
24. Self-assembling biomaterials for theranostic applications
25. Self-assembling artificial enzymes: biomaterial therapies for metabolic diseases
Product details
- No. of pages: 612
- Language: English
- Copyright: © Woodhead Publishing 2018
- Published: April 17, 2018
- Imprint: Woodhead Publishing
- eBook ISBN: 9780081020128
- Hardcover ISBN: 9780081020159