The purpose of this book is to give a theoretical and practical introduction to seismic-while-drilling by using the drill-bit noise. This recent technology offers important products for geophysical control of drilling. It involves aspects typical of borehole seismics and of the drilling control surveying, hitherto the sole domain of mudlogging.

For aspects related to the drill-bit source performance and borehole acoustics, the book attempts to provide a connection between experts working in geophysics and in drilling.

There are different ways of thinking related to basic knowledge, operational procedures and precision in the observation of the physical quantities. The goal of the book is to help "build a bridge" between geophysicists involved in seismic while drilling - who may need to familiarize themselves with methods and procedures of drilling and drilling-rock mechanics - and drillers involved in geosteering and drilling of "smart wells" - who may have to familiarize themselves with seismic signals, wave resolution and radiation. For instance, an argument of common interest for drilling and seismic while drilling studies is the monitoring of the drill-string and bit vibrations.

This volume contains a large number of real examples of SWD data analysis and applications.

Table of Contents

Preface. Acknowledgments. About the authors. Glossary of main symbols. Unit conversion factors. 1. Introduction and overview. 1.1 Geophysics for exploration and drilling. 1.2 Conventional borehole seismic methods. 1.3 Motivation for seismic while drilling. 1.4 History of the use of the drill-bit signal. 1.5 Overview of the different approaches to SWD. 1.6 Seismic-while-drilling method. 1.7 Main products obtainable while drilling. 1.8 Measurement while drilling and SWD perspectives. 2. Principles of drilling. 2.1 Introduction. 2.2 Drilling a well. 2.3 Main well components. 2.4 Drilling offshore. 2.5 Directional and deviated wells. 2.6 Designing a well. 2.7 Classification of drill-bit types. 3. General theory: drill-bit seismic waves. 3.1 Introduction. 3.2 Reciprocity principle. 3.3 Normal while-drilling VSP. 3.4 Drill-bit seismic source. 3.5 Total drilling power. 3.6 Energy analysis in terms of drilling parameters. 3.7 Energy balance in rock fracture. 3.8 Radiation of energy from the bit (far-field effects). 3.9 Near-field effects. 3.10 Balance of the borehole and radiated power. 3.11 Drill bit versus conventional seismic sources. 3.12 Roller-cone bit as a periodic vibration source. 3.13 Roller-cone bit as a wideband seismic source. 3.14 PDC bit as a vibration source. 3.15 Analysis of PDC single-cutter forces. 3.16 Dynamic variation of PDC-cutter forces. 3.17 Summary of large bit-v


No. of pages:
© 2004
eBook ISBN:
Print ISBN:
Print ISBN:

About the authors

F.B. Poletto

Affiliations and Expertise

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Sgonico (Trieste), Italy

F. Miranda

Affiliations and Expertise

ENI, S. Donato Milanese (MI), Italy


"The purpose of this book is to give a theoretical and practical introduction to seismic-while-drilling by using the drill-bit noise...The objective of the book is to help build a bridge between geophysicists involved in seismic while drilling...and drillers involved in geosteering and drilling of smart wells..." -PETROLEUM ABSTRACTS, VOL. 45, 2005 @qu: The book provides a comprehensive look at SWD using a drill bit source. Its strengths are in the theoretical treatment of the subject readability, and up-to-date references. Geophysicists involved in planning SWD acquisition will find this book useful. With the abundant details on drilling operations, it provides a crossover opportunity for discussion with drilling engineers. @source: The Leading Edge, 2005