Random Matrices, Volume 142
3rd Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
Gaussian Ensembles. The Joint Probability Density Function of the Matrix Elements. Gaussian Ensembles. The Joint Probability Density Function of the Eigenvalues. Gaussian Ensembles. Level Density. Gaussian Unitary Ensemble. Gaussian Orthogonal Ensemble. Gaussian Symplectic Ensemble. Brownian Motion Model. Circular Ensembles. Circular Ensembles (Continued). Circular Ensembles. Thermodynamics. Asymptotic Behaviour of B(O,s) for Large S. Gaussian Ensemble of Anti-Symmetric Hermitian Matrices. Another Gaussian Ensemble of Hermitian Matrices. Matrices with Gaussian Element Densities but with No Unitary or Hermitian Condition Imposed. Statistical Analysis of a Level Sequence. Selberg's Integral and Its Consequences. Gaussian Ensembles. Level Density in the Tail of the Semi-Circle. Restricted Trace Ensembles. Bordered Matrices. Invariance Hypothesis and Matrix Element Correlations. Index.
Description
Random Matrices gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets.
This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time.
Key Features
- Presentation of many new results in one place for the first time
- First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals
- Fredholm determinants and Painlevé equations
- The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities
- Fredholm determinants and inverse scattering theory
- Probability densities of random determinants
Readership
Researchers in the theoretical physics and number theory and Ph. D. students
Details
- No. of pages:
- 706
- Language:
- English
- Copyright:
- © Academic Press 2004
- Published:
- 6th October 2004
- Imprint:
- Academic Press
- Hardcover ISBN:
- 9780120884094
- eBook ISBN:
- 9780080474113
Ratings and Reviews
About the Author
Madan Lal Mehta
Affiliations and Expertise
C.E.A. de Saclay, Gif-sur-Yvette Cedex, France
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.