Radiation Effects Computer Experiments
1st Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
Preface
1 Introduction
1.1 The Computer Experiment Concept
1.2 Defect Production Computer Experiments
1.3 Defect Annealing Computer Experiments
1.4 Defect Property Computer Experiments
1.5 Defect Interaction Computer Experiments
1.6 Nature of the Book
1.7 Plan of the Book
Appendix A1 Computer Experiment Utility
References
2 Computer Experiment Methods
2.1 Introduction
2.2 Dynamical Method
2.2.1 Introduction
2.2.2 Central Difference Approximation
2.2.3 A Simple Dynamical Method Program
2.2.4 Static Equilibrium Atom Position Calculations
2.2.5 Critical Damping
2.2.6 Inelastic Atomic Collisions
2.3 Monte Carlo Method
2.3.1 Introduction
2.3.2 Probabilistic Selection
2.3.3 Mean Square Migration Distance
2.3.4 Defect Encounter Probability Calculations
2.3.5 Concurrent Migration of Many Defects
2.3.6 Primary Radiation Particle (PRP) Collision Chains
2.3.7 Frequently Used Probability Functions
2.4 Variational Method
References (ch. 2)
Appendix A2.1 Computational Cell Construction
A2.1.1 Introduction
A2.1.2 Simple Cubic Crystal
A2.1.3 Body-Centered Cubic Crystal
A2.1.4 Face-Centered Cubic Crystal
A2.1.5 Hexagonal Close-Packed Crystal
Appendix A2.2 Periodic Boundary Conditions
Appendix A2.3 Elastic Continuum Boundary Conditions
Appendix A2.4 Thermal Crystal Initial Conditions
A2.4.1 Procedure (1)
A2.4.2 Procedure (2)
A2.4.3 Procedure (3)
A2.4.4 Procedure (4)
Appendix A2.5 Dynamical Method Integration Schemes
A2.5.1 Central Difference Scheme
A2.5.2 Euler-Cauchy Scheme
A2.5.3 Simple Predictor-Corrector Scheme
A2.5.4 Nordsieck Method for Newton's Equations
A2.5.5 Comparison of the Four Schemes
Appendix A2.6 Time Step Change in a Dynamical Method Program
Appendix A2.7 Force Calculations
Appendix A2.8 Atom Velocity Damping at the Computational Cell Boundary
Appendix A2.9 Firsov Inelastic Collision Model for Dynamical Method Programs
Appendix A2.10 Statistical Sampling
A2.10.1 Discrete Sampling Space
A2.10.2 Continuous Sample Space
A2.10.3 Statistical Sampling Using a CDF
A2.10.4 Statistical Sampling Using PDF (Rejection Technique)
Appendix A2.11 Multiply Occupied Atom Sites
References (Appendix A2)
3 Outline of Defect Properties Computations
3.1 Introduction
3.1.1 Defect Types
3.1.2 Elemental and Compound Defects
3.1.3 Defect Property
3.2 Defect Energies
3.2.1 Configuration and Formation Energies
3.2.2 Migration Energy
3.2.3 Binding Energy
3.2.4 Dissociation Energy
3.3 Configuration Energy Computation Procedure
3.4 Migration Energy Computation Procedure
3.5 Entropy Calculations
3.6 Metal Models Used in Defect Property Example Calculations
3.7 Neighbor Shells in BCC, FCC and HCP Crystals
3.7.1 Introduction
3.7.2 Neighbor Shells in a BCC Crystal
3.7.3 Neighbor Shells in a FCC Crystal
3.7.4 Neighbor Shells in a HCP Crystal
Appendix A3.1 BCC Computational Cell Site Maps
Appendix A3.2 FCC Computational Cell Site Maps
Appendix A3.3 HCP Computational Cell Site Maps
References
4 Vacancies and Divacancies
4.1 Introduction
4.2 Configuration and Binding Energies
4.3 Vacancy GE1% Displacement Field
4.3.1 Introduction
4.3.2 Vacancy Displacement Field in BCC Iron(m)
4.3.3 Vacancy Displacement Field in Nickel(m)
4.3.4 Vacancy Displacement Field in FCC Iron(m)
4.3.5 Vacancy Displacement Field in the HCP Metal(m)
4.4 Divacancy GE1% Displacement Field
4.4.1 Introduction
4.4.2 Divacancy Displacement Field in BCC Iron(m)
4.4.3 Divacancy Displacement Field in Nickel(m)
4.4.4 Divacancy Displacement Field in FCC Iron(m)
4.4.5 Divacancy Displacement Field in the HCP Metal(m)
References
5 Self Interstitials
5.1 Introduction
5.2 Self Interstitials in BCC Iron(m)
5.3 Self Interstitials in a FCC Metal
5.3.1 Introduction
5.3.2 Octahedral Self Interstitial in FCC Iron(m)
5.3.3 Octahedral Self Interstitial in Nickel(m)
5.3.4 Tetrahedral Self Interstitial in FCC Iron(m)
5.3.5 Tetrahedral Self Interstitial in Nickel(m)
5.3.6 [100] Split Self Interstitial in FCC Iron(m)
5.3.7 [100] Split Self Interstitial in Nickel(m)
5.3.8 [110] Axis Self Interstitial in FCC Iron(m)
5.3.9 [110] Axis Interstitial in Nickel(m)
5.3.10 [111] Split Interstitial in FCC Iron(m)
5.3.11 [111] Split Interstitial in Nickel(m)
5.3.12 (111)p Interstitial in FCC Iron(m)
5.4 Self Interstitials in the HCP Metal(m)
5.4.1 Introduction
5.4.2 Point A Split Self Interstitial
5.4.3 Octahedral Self Interstitial (Point B)
5.4.4 C-Axis Split Interstitial (Point C)
5.4.5 Point D Split Self Interstitial
5.4.6 Symmetrical Point Ε Interstitial
5.4.7 Asymmetrical Point Ε Interstitial
References
6 Impurity Atoms
6.1 Introduction
6.2 Substitutional Metallic Large Impurity Atom (LIA)
6.2.1 LIA(m) in BCC Iron(m)
6.2.2 LIA(m) in Nickel(m)
6.2.3 LIA(m) in FCC Iron(m)
6.2.4 LIA(m) in the HCP Metal(m)
6.3 Substitutional Metallic Small Impurity Atom (SIA)
6.3.1 SIA(m) in BCC Iron(m)
6.3.2 SIA(m) in Nickel(m)
6.3.3 SIA(m) in FCC Iron(m)
6.3.4 SIA(m) in the HCP Metal(m)
6.4 Helium
6.4.1 Introduction
6.4.2 Helium(m) in BCC Iron(m)
6.4.3 Helium(m) in Nickel(m)
6.4.4 Helium(m) in FCC Iron(m)
6.4.5 Helium(m) in the HCP Metal(m)
6.5 Carbon
6.5.1 Introduction
6.5.2 Interstitial Carbon(m) in BCC Iron(m)
6.5.3 Interstitial Carbon(m) in Nickel(m)
6.5.4 Interstitial Carbon(m) in FCC Iron(m)
6.5.5 Carbon(m) in the HCP Metal(m)
6.6 Carbon(m)-Vacancy and Carbon(m)-Interstitial Complexes
6.6.1 Carbon(m)-Vacancy Complexes in BCC Iron(m)
6.6.2 Carbon(m)-Interstitial Complexes in BCC Iron(m)
6.6.3 Carbon(m)-Vacancy Complexes in Nickel(m)
6.6.4 Carbon(m)-Self Interstitial Complexes in Nickel(m)
6.6.5 Effect of Carbon(m) on Frenkel Pair Production in Nickel(m)
6.6.6 Carbon(m)-Vacancy Complexes in FCC Iron(m)
6.6.7 Carbon(m)-Interstitial Complexes in FCC Iron(m)
6.6.8 Carbon Complexes in a HCP Metal
6.7 Helium Complexes
6.7.1 Introduction
6.7.2 Helium-Vacancy Complexes in Tungsten(m1)
6.7.3 Helium-Vacancy Complexes in Molybdenum
6.7.4 Helium Interactions with an Edge Dislocation
6.7.5 Helium(m)-Vacancy Complexes in BCC Iron(m)
6.7.6 Helium(m)-Interstitial Complexes in BCC Iron(m)
6.7.7 Helium(m)-Vacancy Complexes in Nickel(m)
6.7.8 Helium-Vacancy Complexes in Copper
References
7 Defect Migration
7.1 Introduction
7.2 Vacancy Migration
7.2.1 Vacancy Migration in Nickel(m)
7.2.2 Vacancy Migration in FCC Iron(m)
7.2.3 Vacancy Migration in BCC Iron(m)
7.2.4 Vacancy Migration in the HCP Metal(m)
7.3 Divacancy Migration
7.3.1 Divacancy Migration in BCC Iron(m)
7.3.2 Divacancy Migration in FCC Iron
7.4 Self-Interstitial Migration
7.4.1 Self-Interstitial Migration in a FCC Metal
7.4.2 Interstitial Migration in BCC Iron(m)
7.4.3 Interstitial Migration in a HCP Metal
7.5 Carbon(m) Migration
7.5.1 Carbon(m) Migration in Cubic Metals
7.5.2 Carbon(m) Migration in a HCP Metal
7.5.3 Migration of a Vacancy-Carbon(m) Complex in Nickel
7.6 Helium(m) Migration
7.6.1 Helium(m) Migration in Cubic Metals
7.6.2 Helium(m) Migration in the HCP Metal(m)
7.6.3 HE(m1)-V Complex Migration in Copper(m1)
7.6.4 HE(m1)-V Complex Migration in Tungsten(m1)
7.7 Dynamical Method Simulation of Defect Migration
7.7.1 Dynamical Method Simulation of Helium(m) Migration in BCC Iron(m)
7.7.2 Dynamical Method Simulation of Self Interstitial Diffusion in Tungsten(m3)
References
8 Vacancy Clusters
8.1 Introduction
8.2 Vacancy Clusters in BCC Iron(m)
8.2.1 Trivacancies
8.2.2 Trivacancy Configuration Change
8.2.3 Trivacancy Migration
8.2.4 Tetravacancies
8.2.5 Vacancy Clusters Larger than V4
8.3 Vacancy Clusters in FCC Metals
8.3.1 Trivacancies
8.3.2 Tetravacancies
8.3.3 Clusters Larger than V4
8.3.4 Dislocation Loop Formation
8.3.5 Vacancy Cluster Migration
8.4 Vacancy Clusters in the HCP Metal(m)
8.5 Heterogeneous Nucleation of Vacancy Clusters and Voids
8.5.1 Introduction
8.5.2 Carbon(m) Stabilization of V2(2) in BCC Iron(m)
8.5.3 Carbon Stabilization of Void Nuclei in BCC Iron(m)
8.5.4 Carbon(m) Stabilization of V2(1) in Nickel(m)
8.5.5 Helium(m1) Stabilization of Vacancy Clusters in Copper(m1)
8.5.6 Helium(m1) Stabilization of Vacancy Clusters in Tungsten(m1)
References
9 Interstitial Clusters
9.1 Introduction
9.2 Interstitial Clusters in FCC Iron(m)
9.3 Interstitial Loops in FCC Iron(m)
9.3.1 Introduction
9.3.2 Faulted (111) Interstitial Loops in FCC Iron(m)
9.3.3 Perfect (110) Interstitial Dislocation Loops in FCC Iron(m)
9.4 Interstitial Clusters in BCC Iron(m)
References
10 Isolated Frenkel Pair Production
10.1 Introduction
10.1.1 Frenkel Pair
10.1.2 Annihilation Region
10.1.3 Replacement Collision Chains
10.1.4 Displacement Energy Threshold
10.1.5 Frenkel Pair Production Time
10.1.6 Summary
10.2 Frenkel Pair Production Computational Procedure
10.2.1 Introduction
10.2.2 Computational Procedure
10.3 Case History: A 25 eV [010] Replacement Collision Chain in BCC Iron(m2)
10.4 Case History: A 25 eV [110] Replacement Collision Chain in FCC Iron(m2)
10.5 Frenkel Pair Production in Copper(m)
10.5.1 Introduction
10.5.2 Focussed Collision Chains in Copper(m)
10.5.3 Interstitial Local Modes
10.6 Isolated Frenkel Pair Production in BCC Iron(m1)
10.6.1 Introduction
10.6.2 Displacement Energy Threshold Directional Dependence
10.6.3 (111) Replacement Chains in BCC Iron(m1)
10.6.4 (100) Replacement Chains in BCC Iron(m1)
10.6.5 (110) Replacement Chains in BCC Iron(m1)
10.6.6 Off-Axis Shots
10.7 Frenkel Pair Production in Tungsten(m3)
10.8 Collision Chains in FCC Iron(m2)
10.9 Frenkel Pair Production in the HCP Metal(m)
10.9.1 Introduction
10.9.2 [1210] Replacement Collision Chain
10.9.3 [0001] Replacement Collision Chain
10.9.4 [1100] Replacement Collision Chain
10.10 Transition from One to Two Displacements
10.11 Effect of Thermal Vibrations on Frenkel Pair Production
10.11.1 Introduction
10.11.2 Effect of Thermal Vibrations of Frenkel Pair Production in FCC Iron(m2)
10.11.3 Effect of Thermal Vibrations on Frenkel Pair Production in Tungsten(m3)
References
11 Binary Collision Approximation Cascade Program Construction
11.1 Introduction
11.2 General Features of BCA Computer Program Construction
11.3 Box Method for Locating Defects and Atoms
11.3.1 Introduction
11.3.2 Indices of the Nearest Mesh Point
11.3.3 Box Indices from Mesh Point Indices
11.3.4 Box Number (NBOX)
11.3.5 Relative Mesh Point Indices (IR, JR, KR)
11.3.6 Mesh Point Position Number (NPOS)
11.3.7 Utility of NBOX and NPOS
11.3.8 Normal Atom Site Mesh Points
11.3.9 Rectangular Boxes
11.4 Target Atom Selection
11.4.1 Cell Method
11.4.2 Target Selection: Neighbor Method
11.5 Collision Geometry
11.6 Collision Time and Angle
11.7 Energy Transfer
11.8 Collision Asymmetry Due to Inelastic Loss
11.9 Multiple Targets
11.10 QUEUE Table
11.11 Vacancy and Interstitial Production Criteria
Appendix A11.1 Hashing Technique
Appendix A11.2 Heap Table Technique
References
12 Collision Cascades and Displacement Spikes
12.1 Introduction
12.2 Definitions
12.2.1 Collision Cascade
12.2.2 Displacement Event
12.2.3 Fresh Displacement Spike
12.2.4 Displacement Spike Annealing Regimes
12.3 Cascade Structure
12.3.1 Introduction
12.3.2 Low Energy Cascades in Iron(m1): Ε < 2.5keV
12.3.3 2.5keV Cascade in Iron(m1)
12.3.4 2.5keV Cascades in Tungsten(m4)
12.3.5 Secondary Cascades and Subcascades in FCC Iron(m1)
12.4 Cascade Collided Atom Volume
12.5 Displacement Efficiency
References
13 Defect Annealing Program Construction: The RINGO Program
13.1 Introduction
13.2 Flow Diagram for RINGO
13.3 Defect Tables and the MOVE Table
13.4 Defect Interaction Criteria
13.5 Time Step Change
13.6 RINGO Subprogrammes
13.7 Simulation of Impurity Atom and Defect Dissociation Effects on Defect Annealing
References
14 Defect Annealing Simulation
14.1 Introduction
14.2 Migration of a Point Defect to Fixed Point Sinks
14.3 Defect Encounter Probability
14.4 Long-Term Annealing Models
14.4.1 Introduction
14.4.2 Two-Jumps Model: FCC Crystal
14.4.3 Three-Jumps Model: FCC Crystal
14.4.4 Four-Jumps Model: FCC Crystal
14.4.5 Site Selection for the Two-, Three- and Four- Jumps Models
14.4.6 Ten-or-More Jumps Model: FCC Crystal
14.5 Saturated Defect State Annealing
14.5.1 Introduction
14.5.2 Infinite Volume Annealing Simulation
14.5.3 Finite Volume Annealing Simulation
14.6 Displacement Spike Annealing in Niobium(m)
14.6.1 Introduction
14.6.2 Displacement Spike Annealing Results
14.6.3 Saturated Defect State and 20keV Displacement Spike Annealing Compared
14.7 Displacement Spike Annealing in Iron(m1)
14.7.1 Introduction
14.7.2 Displacement Spike Annealing in BCC Iron(m)
14.7.3 20keV Displacement Spike Annealing in FCC Iron(m1)
14.7.4 100keV Displacement Spike Annealing in FCC Iron(m1)
References
15 Electron Irradiation Simulation
15.1 Introduction
15.2 HVEM Electron Irradiation at 0k
15.3 HVEM Electron Irradiation at 136K
15.4 HVEM Electron Irradiation at Τ > 136K
16 Self-Ion Irradiation
16.1 Introduction
16.2 Spatial Distribution of PKA Ejection Sites
16.3 Vacancy Extent
16.4 PKA Energy Spectrum: MeV Energy Range Self-Atom Irradiation
16.5 Damage Energy Fraction
16.6 Damage Energy Transport
16.7 Comparison with LSS Theory
16.8 Short-Term Annealing of 4MeV Self-Atom Displacement Spike Ensembles in FCC Iron(FEV)
16.8.1 Average-Range Primary Atom Cascades
16.8.2 Short- and Long-Range Primary Atom Cascades
References
Glossary
Index
Description
Defects in Solids, Volume 13: Radiation Effects Computer Experiments provides guidance to persons interested in learning how to develop and use computer experiment programs to simulate defect production and annealing in solids.
The book first elaborates on computer experiment methods and outline of defect properties computations. Topics include metal models used in defect property example calculations; configuration energy computation procedure; migration energy computation procedure; dynamical method; and Monte Carlo method. The publication also examines vacancies and divacancies and self interstitials.
The manuscript takes a look at impurity atoms, defect migration, and vacancy clusters. Discussions focus on heterogeneous nucleation of vacancy clusters and voids, vacancy and divacancy migration, substitutional metallic large impurity atom, and vacancy clusters in face-centered cubic metals. The publication also tackles binary collision approximation cascade program construction and collision cascades and displacement spikes. The text is a valuable source of information for readers wanting to develop and use computer experiment programs to copy defect production and annealing in solids.
Details
- No. of pages:
- 900
- Language:
- English
- Copyright:
- © North Holland 1983
- Published:
- 1st January 1983
- Imprint:
- North Holland
- eBook ISBN:
- 9780080984643
Ratings and Reviews
About the Author
J.R. Beeler
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.