Description

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells.

Key Features

  • This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena
  • The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology
  • Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology
  • As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today
  • There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has

Readership

Teaching and research faculty, upper-undergraduate and graduate students majoring in Physics, Chemistry, Chemical Engineering, Material Engineering, Electrical Engineering

Table of Contents

Preface

Acknowledgments

1. Introduction to Quantum Mechanics

1.1 What is Quantum Mechanics?

1.2 Nanotechnology and Information Technology

1.3 A First Taste of Quantum Mechanics

2. The Formalism of Quantum Mechanics

2.1 Hilbert Space and Dirac Notation

2.2 Hermitian and Anti-Hermitian Operators

2.3 The Uncertainty Principle

2.4 The Measurement Problem

2.5 Mixed States: Density Matrix Formulation

2.6 The Wigner Representation

2.7 Schrödinger and Heisenberg Representations

2.8 The Correspondence Principle and the Classical Limit

2.9 Symmetry and Conservation Laws in Quantum Mechanics

3. Angular Momentum and Spherical Symmetry

3.1 Angular Momentum in Quantum Mechanics

3.2 Spherically Symmetric Systems

3.3 Rotations and Angular Momentum

3.4 Addition (Coupling) of Angular Momenta

3.5 Tensor Operators

3.6 Symmetry Considerations

4. Spin

4.1 Spin Angular Momentum

4.2 Spinors

4.3 Electron in a Magnetic Field

4.4 Time-Reversal Properties of Spinors

4.5 Spin–Orbit Interaction in Atoms

4.6 Hyperfine Interaction

4.7 Spin-Dipolar Interactions

4.8 Introduction to Magnetic Resonance

5. Quantum Information

5.1 Classical Computation and Classical Information

5.2 Quantum Information

5.3 Quantum Computing Algorithms

5.4 Decoherence

5.5 Quantum Error Correction

5.6 Experimental Implementations

5.7 The EPR Paradox

5.8 Bell’s Inequalities

6. Quantum Dynamics and Correlations

6.1 Two-Level Systems

6.2 Three-Level Systems

6.3 Classification of Correlation and Entanglement

6.4 Three-Level System Dynamics

6.5 Continuous-Variable Systems

6.6 Wave Packet Dynamics

6.7 Time-Dependent Hamiltonians

Details

No. of pages:
992
Language:
English
Copyright:
© 2012
Published:
Imprint:
Academic Press
Print ISBN:
9780444537867
Electronic ISBN:
9780444537874

Reviews

"...a grandiose project creating a unified source of all important information related to modern Quantum Mechanics…has a very good balance between verbal explanations and math in the text and between the text itself, problems and illustrations." --Zentralblatt MATH

"...will be of greatest interest to physics students who already have some exposure to quantum mechanics. It would work well as the textbook for a more specialized survey of topics in modern quantum physics alongside established texts dedicated to the fundamentals." --Physics Today, July 2014