COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Petroleum Production Engineering, A Computer-Assisted Approach - 1st Edition - ISBN: 9780750682701, 9780080479958

Petroleum Production Engineering, A Computer-Assisted Approach

1st Edition

0.0 star rating Write a review
Author: Boyun Guo
Hardcover ISBN: 9780750682701
Paperback ISBN: 9781493303243
eBook ISBN: 9780080479958
Imprint: Gulf Professional Publishing
Published Date: 5th February 2007
Page Count: 312
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Petroleum Production Engineering, A Computer-Assisted Approach provides handy guidelines to designing, analyzing and optimizing petroleum production systems. Broken into four parts, this book covers the full scope of petroleum production engineering, featuring stepwise calculations and computer-based spreadsheet programs. Part one contains discussions of petroleum production engineering fundamentals, empirical models for production decline analysis, and the performance of oil and natural gas wells. Part two presents principles of designing and selecting the main components of petroleum production systems including: well tubing, separation and dehydration systems, liquid pumps, gas compressors, and pipelines for oil and gas transportation. Part three introduces artificial lift methods, including sucker rod pumping systems, gas lift technology, electrical submersible pumps and other artificial lift systems. Part four is comprised of production enhancement techniques including, identifying well problems, designing acidizing jobs, guidelines to hydraulic fracturing and job evaluation techniques, and production optimization techniques.

Key Features

  • Provides complete coverage of the latest techniques used for designing and analyzing petroleum production systems
  • Increases efficiency and addresses common problems by utilizing the computer-based solutions discussed within the book
  • Presents principles of designing and selecting the main components of petroleum production systems


Pipeline Engineering, Petroleum engineering

Table of Contents

Preface List of Symbols List of Tables List of Figures Part I: Petroleum Production Engineering Fundamentals Chapter 1: Petroleum Production System 1.1 Introduction 1.2 Reservoir 1.3 Well 1.4 Separator 1.5 Pump 1.6 Gas Compressor 1.7 Pipelines 1.8 Safety Control System
1.9 Unit Systems
Summary References Problems Chapter 2: Properties of Oil and Natural Gas 2.1 Introduction 2.2 Properties of Oil 2.2.1 Solution Gas Oil Ratio 2.2.2 Density of Oil 2.2.3 Formation Volume Factor of Oil 2.2.4 Viscosity of Oil 2.2.5 Oil Compressibility 2.3 Properties of Natural Gas 2.3.1 Specific Gravity of Gas 2.3.2 Gas Pseudocritical Pressure and Temperature 2.3.3 Viscosity of Gas 2.3.4 Gas Compressibility Factor 2.3.5 Density of Gas 2.3.6 Formation Volume Factor of Gas 2.3.7 Gas Compressibility Summary References Problems Chapter 3: Reservoir Deliverability 3.1 Introduction 3.2 Flow Regimes 3.2.1 Transient Flow 3.2.2 Steady State Flow 3.2.3 Pseudosteady State Flow 3.2.4 Horizontal Well 3.3 Inflow Performance Relationship (IPR) 3.3.1 IPR for Single (Liquid) Phase Reservoirs 3.3.2 IPR for Two-Phase Reservoirs 3.3.3 IPR for Partial Two-Phase Oil Reservoirs 3.4 Construction of IPR Curves Using Test Points 3.5 Composite IPR of Stratified Reservoirs 3.5.1 Composite IPR Models Single-Phase Liquid Flow Two-Phase Flow Partial Two-Phase Flow 3.5.2 Applications 3.6 Future IPR 3.6.1 Vogel’s Method 3.6.2 Fetkovich’s Method Summary References Problems Chapter 4: Wellbore Performance 4.1 Introduction 4.2 Single-Phase Liquid Flow 4.3 Multiphase Flow in Oil Wells 4.3.1 Flow Regimes 4.3.2 Liquid Holdup 4.3.3 TPR Models Homogeneous-Flow Models Separated-Flow Models 4.4 Single-Phase Gas Flow 4.4.1 The Average Temperature and Compressibility Factor Method 4.4.2 The Cullender and Smith Method 4.5 Mist Flow in Gas Wells Summary References Problems Chapter 5: Choke Performance 5.1 Introduction 5.2 Sonic and Subsonic Flow 5.3 Single-Phase Liquid Flow 5.4 Single-Phase Gas Flow 5.4.1 Subsonic Flow 5.4.2 Sonic Flow 5.4.3 Temperature at Choke 5.4.4 Applications 5.5 Multiphase Flow 5.5.1 Critical (Sonic) Flow. 5.5.2 Subcritical (Subsonic) Flow Summary References Problems Chapter 6: Well Deliverability 6.1 Introduction 6.2 Nodal Analysis 6.2.1 Analysis with the Bottom Hole Node Gas Well Oil Well 6.2.2 Analysis with Wellhead Node Gas Well Oil Well 6.3 Deliverability of Multilateral Well 6.3.1 Gas Well 6.3.2 Oil Well Summary References Problems Chapter 7: Forecast of Well Production 7.1 Introduction 7.2 Oil Production during Transient Flow Period 7.3 Oil Production during Pseudo-Steady Flow Period 7.3.1 Oil Production during Single-Phase Flow Period 7.3.2 Oil Production during Two-Phase Flow Period 7.4 Gas Production during Transient Flow Period 7.5 Gas Production during Pseudo-Steady Flow Period Summary References Problems Chapter 8: Production Decline Analysis 8.1 Introduction 8.2 Exponential Decline 8.2.1 Relative Decline Rate 8.2.2 Production Rate Decline 8.2.3 Cumulative Production 8.2.4 Determination of Decline Rate 8.2.5 Effective Decline Rate 8.3 Harmonic Decline 8.4 Hyperbolic Decline 8.5 Model Identification 8.6 Determination of Model Parameters 8.7 Illustrative Examples Summary References Problems Part II: Equipment Design and Selection Chapter 9: Well Tubing 9.1 Introduction 9.2 Strength of Tubing 9.3 Tubing Design 9.3.1 Tension, Collapse, and Burst Design 9.3.2 Buckling Prevention During Production
9.3.3 Considerations for Well Treatment and Stimulation Temperature Effect Pressure Effect Total Effect of Temperature and Pressure Summary References Problems Chapter 10: Separation Systems 10.1 Introduction 10.2 Separation Systems 10.2.1 Principles of Separation 10.2.2 Types of Separators Vertical Separators Horizontal Separators Spherical Separators 10.2.3 Factors Affecting Separation 10.2.4 Selection of Separators Gas Capacity10.2.4.1 Gas Capacity Liquid Capacity 10.2.5 Stage Separation 10.3 Dehydration Systems 10.3.1 Water Content of Natural Gas Streams 10.3.2 Methods for Dehydration Dehydration by Cooling Dehydration by Adsorption Dehydration by Absorption Glycol Dehydration Process Advantages and Limitations Sizing Glycol Dehydrator Unit Summary References Problems Chapter 11: Transportation Systems 11.1 Introduction 11.2 Pumps 11.2.1 Triplex Pumps 11.2.2 Duplex Pumps 11.3 Compressors 11.3.1 Types of Compressors 11.3.2 Reciprocating Compressors 11.3.3 Centrifugal Compressors 11.4 Pipelines 11.4.1 Flow in Pipelines Oil Flow Gas Flow Weymouth Equation for Horizontal Flow Weymouth Equation for Non-horizontal Flow Panhandle-A Equation for Horizontal Flow Panhandle-B Equation for Horizontal Flow Clinedinst Equation for Horizontal Flow Pipeline Efficiency 11.4.2 Design of Pipelines Wall Thickness Design Design Procedure Design for Internal Pressure Design for External Pressure Corrosion Allowance Check for Hydrotest Condition Insulation Design Insulation Materials Heat Transfer Models Summary References Problems Part III: Artificial Lift Methods Chapter 12: Sucker Rod Pumping 12.1 Introduction 12.2 Pumping System 12.3 Polished Rod Motion 12.4 Load to the Pumping Unit 12.4.1 Maximum PRL 12.4.2 Minimum PRL 12.4.3 Counterweights 12.4.4 Peak Torque and Speed Limit 12.4.5 Tapered Rod Strings 12.5 Pump Deliverability and Power Requirements 12.5.1 Effective Plunger Stroke Length 12.5.2 Volumetric Efficiency 12.5.3 Power Requirements 12.6 Procedure for Pumping Unit Selection 12.7 Principles of Pump Performance Analysis Summary References Problems Chapter 13: Gas Lift 13.1 Introduction 13.2 Gas Lift System 13.3 Evaluation of Gas Lift Potential 13.4 Gas Lift Gas Compression Requirements 13.4.1 Gas Flow Rate Requirement 13.4.2 Output Gas Pressure Requirement Injection Pressure at Valve Depth Injection Pressure at Surface Pressure Upstream the Choke Pressure of the Gas Distribution Line 13.4.3 Compression Power Requirement Reciprocating Compressors Volumetric Efficiency Stage Compression Isentropic Horsepower Centrifugal Compressors 13.5 Selection of Gas Lift Valves 13.5.1 Unloading Sequence 13.5.2 Valve Characteristics Pressure Valve Unbalanced Bellow Valve Balanced Pressure Valve Pilot Valve Throttling Pressure Valve Fluid-Operated Valve Combination Valves 13.5.3 Valve Spacing 13.5.4 Valve Selection and Testing Valve Sizing Valve Testing 13.6 Special Issues in Intermittent Flow Gas-Lift 13.7 Design of Gas Lift Installations Summary References Problems Chapter 14: Other Artificial Lift Methods 14.1 Introduction 14.2 Electrical Submersible Pump 14.2.1 Principle 14.2.2 ESP Applications 14.3 Hydraulic Piston Pumping 14.4 Progressive Cavity Pumping 14.4.1 Down Hole PCP Characteristics 14.4.2 Selection of Down Hole PCP 14.4.3 Selection of Drive String 14.4.4 Selection of Surface Driver 14.5 Plunger Lift 14.5.1 Working Principle 14.5.2 Design Guideline Estimate of Production Rates with Plunger Lift GLR and Buildup Pressure Requirements Rules of Thumb Analytical Method 14.6 Hydraulic Jet Pumping 14.6.1 Working Principle 14.6.2 Technical Parameters 14.6.3 Selection of Jet Pumps Summary References Problems Part IV: Production Enhancement Chapter 15: Well Problem Identification 15.1 Introduction 15.2 Low Productivity 15.2.1 Pressure Transient Data Analysis 15.3 Excessive Gas Production 15.4 Excessive Water Production 15.5 Liquid Loading of Gas Wells 15.5.1 Turner’s Method 15.5.2 Guo et al.’s Method Minimum Kinetic Energy Four-Phase Flow Model Minimum Required Gas Production Rate 15.5.3 Comparison of Turner’s and Guo et al.’s Methods Summary References Problems Chapter 16: Matrix Acidizing 16.1 Introduction 16.2 Acid/Rock Interaction 16.2.1 Primary Chemical Reactions 16.2.2 Dissolving Power of Acids 16.2.3 Reaction Kinetics 16.3 Sandstone Acidizing Design 16.3.1 Selection of Acid 16.3.2 Acid Volume Requirement 16.3.3 Acid Injection Rate 16.3.4 Acid Injection Pressure 16.4 Carbonate Acidizing Design 16.4.1 Selection of Acid 16.4.2 Acidizing Parameters Summary References Problems Chapter 17: Hydraulic Fracturing 17.1 Introduction 17.2 Formation Fracturing Pressure 17.3 Fracture Geometry 17.3.1 Radial Fracture Model 17.3.2 The KGD Model 17.3.3 The PKN model 17.3.4 Three-Dimensional and Pseudo-3D Models 17.4 Productivity of Fractured Wells 17.5 Hydraulic Fracturing Design 17.5.1 Selection of Fracturing Fluid 17.5.2 Selection of Proppant 17.5.3 The Maximum Treatment Pressure 17.5.4 Selection of Fracture Model 17.5.5 Selection of Treatment Size 17.5.6 Production Forecast and NPV Analyses 17.6 Post-frac Evaluation 17.6.1 Pressure Matching 17.6.2 Pressure Build-Up Test Analysis 17.6.3 Other Evaluation Techniques Summary References Problems Chapter 18: Production Optimization 18.1 Introduction 18.2 Naturally Flowing Well 18.3 Gas-Lifted Well 18.4 Sucker Rod-Pumped Well 18.5 Separator 18.6 Pipeline Network 18.6.1 Pipelines in Series 18.6.2 Pipelines in Parallel 18.6.3 Looped Pipelines 18.7 Gas Lift Facility 18.8 Oil and Gas Production Fields 18.8.1 Types of Flow Networks 18.8.2 Optimization Approaches Simulation Approach Optimization Approach 18.8.3 Procedure for Production Optimization 18.8.4 Production Optimization Software ReO HYSYS FAST Piper 18.9 Discounted Revenue Summary References Problems Appendix A: Unit Conversion Factors Appendix B: The Minimum Performance Properties of API Tubing


No. of pages:
© Gulf Professional Publishing 2007
5th February 2007
Gulf Professional Publishing
Hardcover ISBN:
Paperback ISBN:
eBook ISBN:

About the Author

Boyun Guo

Dr. Boyun Guo is well known for his contributions to the energy industry in multiphase flow in pipe systems and horizontal well engineering. He is currently a Professor at the University of Louisiana at Lafayette in the Petroleum Engineering Department and Director of the Center for Optimization of Petroleum Systems (COPS). He has over 35 years of work experience in the oil and gas industry and academia, and has previously worked for New Mexico Tech, New Mexico Petroleum Recovery Research Center, and Edinburgh Petroleum Services. He holds a BS degree in Petroleum Engineering from Daqing Petroleum Institute of China, MS degree in Petroleum Engineering from Montana College of Mineral Science and Technology, and a PhD in Petroleum Engineering from New Mexico Institute of Mining and Technology. Dr. Guo has authored over a hundred papers, served on many association committees, and published 13 books of which 10 of those reside with Elsevier.

Affiliations and Expertise

Professor at the University of Louisiana at Lafayette in the Petroleum Engineering Department and Director of the Center for Optimization of Petroleum Systems (COPS)

Ratings and Reviews