Pervaporation, Vapour Permeation and Membrane Distillation

Pervaporation, Vapour Permeation and Membrane Distillation

Principles and Applications

1st Edition - February 7, 2015

Write a review

  • Authors: A Basile, A Figoli, M Khayet
  • eBook ISBN: 9781782422563
  • Hardcover ISBN: 9781782422464

Purchase options

Purchase options
DRM-free (PDF, Mobi, EPub)
Available
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Vapour permeation and membrane distillation are two emerging membrane technologies for the production of vapour as permeate, which, in addition to well-established pervaporation technology, are of increasing interest to academia and industry. As efficient separation and concentration processes, they have high potential for use in the energy, water, chemical, food and pharmaceutical sectors. Part One begins by covering the fundamentals, preparation and characterization of pervaporation, before going on to outline the associated systems and applications. State of the art uses, future trends and next generation pervaporation are then discussed. Part Two then explores the preparation, characterization, systems and applications of membranes for vapour permeation, followed by modelling and the new generation of vapour permeation membranes. Finally, Part Three outlines the fundamentals of membrane distillation and its applications in integrated systems, before the book concludes with a view of the next generation.

Key Features

  • Explores three emerging membrane technologies that produce vapour as a permeate.
  • Looks at the fundamentals, applications, state of the art uses and next generation of each technology.
  • Provides an authoritative guide for chemical engineers and academic researchers interested in membrane technologies for desalination, process water/steam treatment, water purification, VOCs removal and other aspects of pollution control, industrial process chemistry, renewable energy production or separation and concentration in the food/pharmaceutical industries.

Readership

Chemical engineers interested in membrane technologies for: desalination, process water/steam treatment, water purification; VOCs removal and other aspects of pollution control; industrial process chemistry; renewable energy production; separation and concentration in the food/pharmaceutical industries. Academic researchers (i.e. postgraduates onwards) interested in these areas (usually chemical engineers and membranologists).

Table of Contents

    • Related titles
    • List of contributors
    • Woodhead Publishing Series in Energy
    • Preface
    • Part One. Pervaporation
      • 1. Fundamentals of pervaporation
        • 1.1. Introduction
        • 1.2. Fundamentals of mass and heat transfer in pervaporation
        • 1.3. Process and technological matters in pervaporation
        • 1.4. Concluding remarks and future trends
      • 2. Pervaporation membranes: preparation, characterization, and application
        • 2.1. Introduction
        • 2.2. Pervaporation (PV) membrane materials
        • 2.3. Characterization of pervaporation membranes
        • 2.4. Membrane module configurations for pervaporation
        • 2.5. Membranes for pervaporation applications
        • 2.6. Future trends and conclusions
      • 3. Integrated systems involving pervaporation and applications
        • 3.1. Introduction to integrated systems involving pervaporation
        • 3.2. Applications of integrated systems involving pervaporation
        • 3.3. Conclusions and future trends
        • 3.4. Sources of further information and advice
      • 4. Pervaporation modeling: state of the art and future trends
        • 4.1. Introduction
        • 4.2. Fundamentals of pervaporation modeling
        • 4.3. Applications to improve the efficiency of pervaporation
        • 4.4. Conclusions
        • 4.5. Future trends
        • 4.6. Sources of further information and advice
      • 5. Next-generation pervaporation membranes: recent trends, challenges and perspectives
        • 5.1. Introduction
        • 5.2. Modified ceramic membranes
        • 5.3. Mixed matrix membranes
        • 5.4. Bio-inspired membranes and membrane synthesis approaches
        • 5.5. Supported liquid (SL) membranes
        • 5.6. Final remarks and future trends
        • 5.7. Sources of further information
    • Part Two. Vapour permeation
      • 6. Membranes for vapour permeation: preparation and characterization
        • 6.1. Introduction
        • 6.2. Polymer membranes
        • 6.3. Zeolite membranes
        • 6.4. Mixed matrix membranes
        • 6.5. Future directions
      • 7. Integrated systems involving membrane vapor permeation and applications
        • 7.1. Introduction
        • 7.2. Integrated systems involving membrane vapor separation
        • 7.3. Applications of membrane vapor separation
        • 7.4. Conclusion and sources of further information and advice
        • 7.5. Future trends in development of membrane vapor separation
      • 8. Vapour permeation modelling
        • 8.1. Introduction
        • 8.2. Fundamentals of vapour permeation modelling into dense polymeric membranes
        • 8.3. Diffusion modelling
        • 8.4. Solubility modelling
        • 8.5. Vapour permeation in mixed matrix membranes and heterogeneous systems
        • 8.6. Future trends
        • 8.7. Conclusions
      • 9. New generation vapour permeation membranes
        • 9.1. Introduction
        • 9.2. Current limitations of vapour permeation (VP)
        • 9.3. Emerging VP membrane materials
        • 9.4. Emerging membrane module configurations
        • 9.5. Emerging applications for VP
        • 9.6. Conclusions and future trends
        • 9.7. Sources of further information
    • Part Three. Membrane distillation
      • 10. Fundamentals of membrane distillation
        • 10.1. Introduction: nonisothermal membrane processes
        • 10.2. Key characteristics of membrane distillation
        • 10.3. Types of membranes and membrane module configurations for membrane distillation
        • 10.4. Membrane distillation theory
        • 10.5. Typical application of membrane distillation technology
        • 10.6. Conclusions
        • 10.7. Future trends and sources of further information and advice
      • 11. Membranes used in membrane distillation: preparation and characterization
        • 11.1. Introduction
        • 11.2. Materials for membrane distillation (MD) membranes
        • 11.3. Design and fabrication of MD membranes
        • 11.4. Characterization of MD membranes
        • 11.5. MD membrane modules and testing of MD membranes
        • 11.6. Conclusions and future trends
        • 11.7. Sources of further information and advice
      • 12. Integrated systems involving membrane distillation and applications
        • 12.1. Introduction
        • 12.2. Applications of membrane distillation in desalination
        • 12.3. Other applications of membrane distillation
        • 12.4. Integrated systems involving membrane distillation
        • 12.5. Conclusions and future trends
        • 12.6. Sources of further information
      • 13. Modelling of pore wetting in membrane distillation compared with pervaporation
        • 13.1. Introduction
        • 13.2. Fundamentals of membrane distillation (MD) modelling and improvement
        • 13.3. Review of experimental works on MD membrane pore wetting
        • 13.4. Development of a theoretical model for pore wetting in vacuum MD
        • 13.5. Conclusions and future directions
      • 14. Next generation membranes for membrane distillation and future prospects
        • 14.1. Introduction
        • 14.2. Materials for membrane distillation
        • 14.3. Emerging module configurations for membrane distillation
        • 14.4. Conclusions and future trends
    • Index

Product details

  • No. of pages: 480
  • Language: English
  • Copyright: © Woodhead Publishing 2015
  • Published: February 7, 2015
  • Imprint: Woodhead Publishing
  • eBook ISBN: 9781782422563
  • Hardcover ISBN: 9781782422464

About the Authors

A Basile

Angelo Basile, officially qualified as a Full Professor at university in the subject “Sistems, Methods and Technologies of the Chemical Engineering Processes”, until 2020 was a senior researcher at the Italian National Research Council (CNR), wherein he developed membranes for gas purification and membrane reactors for pure hydrogen production. His prolific research works have been published in numerous papers and conference proceedings, and he has also produced various Italian (8), European (3 )and worldwide (1)patents. Basile has edited more than 60 scientific books and 60 special journal issues on membrane science and technology. He is an associate editor of various international journals (like IJHE) and Editor-in-Chief of the International Journal of Membrane Science & Technology; and member of the editorial board of more 20 int. journals. Angelo Basile’s h-index 51, on the areas: Energy, Chem. Eng., Env. Science, Materials Science, Chemistry, (www.scopus.com – 21 March 2022). Today Basile is a R&D Manager at ECO2Energy (Rome) and Hydrogenia (Genoa), both societies under the umbrella of the European society Greeninvest; he also is offcially collaborating with the Dept. of Eng. at the University Campus Bio-medical of Rome.

Affiliations and Expertise

Hydrogenia, Genoa, Italy

A Figoli

Dr. Alberto Figoli obtained his PhD degree at Membrane Technology Group, Twente University (Enschede, The Netherlands) in 2001. He graduated in Food Science and Technology at the Agriculture University of Milan 1996. Since December 2001, he has a permanent position as Researcher at Institute on Membrane Technology (ITM-CNR) in Rende (CS), Italy.

He also had international experience in industrial research labs: about 1 year (1996) at Quest International Nederland B.V. (ICI), Process Research Group, Naarden (The Netherlands) on “Setting of a pilot plant for aromatic compounds extraction using the pervaporation (PV) membrane technology”; Secondment in 2010 and 2011 at GVS, SpA, Bologna, within the EU project “Implementation of Membrane Technology to Industry” (IMETI) on “Preparation and Characterisation of hybrid membranes for VOCs removal”.

He was granted for the “Short Term Mobility Programme” by CNR, in 2004 and 2005, at the “Environmental Protection Agency of United States (USEPA)”, Sustainable Technology Division, Cincinnati (USA) on “Volatile Organic Compounds (VOCs) and aroma removal using a novel asymmetric membrane by pervaporation” nell’ambito dello “Short Term Mobility Programme” funded CNR.

He is responsible and involved in various National and International projects. He is also responsible, within the CNR organisation, for two research lines on membrane preparation and characterisation and on pervaporation (PV) applications.

He is author of more than 60 research papers in peer reviewed journals, several book chapters, a book, two patents and many oral presentations (also as invited lecture) in National and International Conferences and Workshops.

Affiliations and Expertise

Institute on Membrane Technology, Italian National Research Council, Italy

M Khayet

Prof. Dr. Mohamed Khayet Souhaimi is an expert on membrane science and technology (membrane design and fabrication, membrane processes including nanofiltration, emerging technologies) and water treatment (desalination, wastewater treatment, etc.). He has contributed a substantial number of articles (over 100 papers since 2000) on the subject of membrane science and technology to various international refereed journals, including among others, Journal of Membrane Science and Desalination (with an H-index 27 and 2223 Sum of Times Cited in Journal of Citation Reports, JCR, Web of Knowledge). He has filed 3 International Patents on the fabrication of polymeric membranes for water treatment. Recently, he has published 2 books: “Membrane Distillation: Principles and Applications", Elsevier (2011)” and “Membrane Modification: Technology and Applications", CRC Press, Taylor & Francis Group (2012) with special interests in developing antifouling nanofiltration membranes and reduction of membrane fouling by polymer surface modification. He has coordinated various national and international projects funded by different institutions (European Union, Spanish Ministry of External Affaires, Spanish Ministry of Science and Innovation, Middle East Desalination Research Center (MEDRC), Abengoa Water, etc.). He has supervised several research studies (9 Ph.D. thesis, 25 master thesis and undergraduate students). He has also supervised various research studies of visiting professors and researchers from different institutions. He is currently member of the European Desalination Society (EDS), the European Membrane Society (EMS) and the North American Membrane Society (NAMS). He has delivered over 40 oral presentations at national and international conferences on membranes and membrane processes and presented 30 posters. He gave various seminars in national and international Universities and Research centres and organized seminar cycles. He is actually member of the editorial board of the Journals: “Desalination”, “Applied Membrane Science & Technology”, “Membrane Water Treatment (MWT)”, “Membranes”, “Polymers”, “Applied Sciences” and "Journal of Materials Science and Nanotechnology". He has recently received the prestigious “Prince Sultan Bin Abdulaziz International Prize for Water” (PSIPW, 5th edition, 2012) on Alternative Water Resources (Saudi Arabia) for his novel and creative work in membrane distillation (MD) technology that he has studied and promoted in all its theoretical and experimental aspects (from membrane synthesis to implementation).

Affiliations and Expertise

Complutense University of Madrid, Spain

Ratings and Reviews

Write a review

There are currently no reviews for "Pervaporation, Vapour Permeation and Membrane Distillation"