Parallel Computational Fluid Dynamics '96

Parallel Computational Fluid Dynamics '96

Algorithms and Results Using Advanced Computers

1st Edition - December 1, 1996

Write a review

  • Editors: P. Schiano, N. Satofuka, A. Ecer, Jacques Periaux
  • eBook ISBN: 9780080538464

Purchase options

Purchase options
DRM-free (PDF)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order


In the last decade parallel computing has been put forward as the only computational answer to the increasing computational needs arising from very large and complex fluid dynamic problems. Considerable efforts are being made to use parallel computers efficiently to solve several fluid dynamic problems originating in aerospace, climate modelling and environmental applications.Parallel CFD Conferences are international and aim to increase discussion among researchers worldwide.Topics covered in this particular book include typical CFD areas such as turbulence, Navier-Stokes and Euler solvers, reactive flows, with a good balance between both university and industrial applications. In addition, other applications making extensive use of CFD such as climate modelling and environmental applications are also included.Anyone involved in the challenging field of Parallel Computational Fluid Dynamics will find this volume useful in their daily work.

Table of Contents

  • A selection of papers is listed.Invited Papers. Communication cost function for parallel CFD in a heterogeneous environment using Ethernet (Y.P. Chien et al.). Domain partitioning and message passing for the distribution of unstructured mesh calculations on MIMD platforms: application to steady and unsteady compressible flow simulations (S. Lantéri et al.). Parallel conjugate gradient with Schwarz preconditioner applied to fluid dynamics problems (A. Quarteroni et al.). The cubed sphere: a new method for solving PDEs on the sphere. Applications to climate modeling and planetary circulation problems (C. Ronchi et al.). EUROPORT: Parallel CFD for industrial applications (K. Stuben et al.). Parallel NSMB: an industrialized aerospace code for complete aircraft simulations (J.B. Vos et al.). Turbulence. Parallel simulation of turbulent channel flow (G. Amati et al.). Direct numerical simulations of turbulent pipe flow via a portable message-passing code (M. Briscolini, M. Fatica). Parallel simulation of turbulent compressible flows with unstructured domain partitioning. Performance on T3D and SP2 using OOP (M. Buffat et al.). Reactive Flows. Parallel numerical simulation of reacting flows in air quality models (P. D'Ambra et al.). HPF-implementation of a 3D combustion code on parallel computer architectures using fine grain parallelism (B. Risio et al.). Mesh Partitioning and Adaptive Schemes. Unstructured adaptive grid computations on an array of SMPs (R. Biswas et al.). Hydrodynamical simulations of the universe (F.R. Pearce et al.). Dynamic mesh adaptation for unsteady flows within a true parallel environment (R. Richter, P. Leyland). Navier-Stokes Solvers. On the opportunity of parallel implementation of the kinetical-consistent finite difference schemes for gas dynamic flow simulation (I.V. Abalakin et al.). Parallel computation of flow in static mixers (O. Byrde, M.L. Sawley). Parallelisation of ESAUNA within EUROPORT-1: a structured/unstructured aeronautical CFD flow code (C.S. Ierotheou et al.). Parallel Visualization and Postprocessing. A modular approach to visualization for parallel CFD applications (R. Haimes). Distributed visualization of 3D thermal convection in the geological sciences (K.E. Jordan et al.). Implicit Schemes. Parallel solver for unsteady Rayleigh-Bénard problem in limited domains (E. Bucchignani et al.). Implicit multiblock Euler computations using a preconditioned GMRES method (L. Carpintero, V. Daru). Parallel Applications. Vortex blob models implemented on a parallel special purpose computer (G. Braschi et al.). Parallel computing of industrial aerodynamics problems: clean rooms (V.A. Gushchin et al.). Algorithms. Variable time-stepping strategies for explicit and parallel solution of unsteady viscous and inviscid compressible flows (H.U. Akay et al.). Parallel solution of industrial compressible flow problems with static load balancing (A. Alund et al.). Operator splitting for the Stokes equations (W. Heinrichs). Software Tools and Environments. A comparison of high performance fortran and message passing parallelization of a geophysical fluid model (W.D. Anderson, P.K. Smolarkiewicz). Experiences using collective communication in a parallel CFD industrial code (M. Bernaschi et al.). Distributed computing. Integration of an implicit multiblock code into a workstation cluster environment (K.J. Badcock et al.). Numerical simulation of large-scale combustion processes on distributed memory parallel computers using MPI (J. Lepper et al.). Climate Modelling and Hydrodynamics. Parallelisation of a hydrodynamic model using domain decompositioning (N.W. Hibma, W. Eifler). Domain decomposition. Fluid-structural interactions on parallel computer (A. Hadjadj et al.). Special Session AEREA. A local block processing strategy for multiblock flow computations (C. de Nicola et al.).

Product details

  • No. of pages: 516
  • Language: English
  • Copyright: © North Holland 1996
  • Published: December 1, 1996
  • Imprint: North Holland
  • eBook ISBN: 9780080538464

About the Editors

P. Schiano

Affiliations and Expertise

C.I.R.A., Capua, Italy

N. Satofuka

Affiliations and Expertise

Kyoto Institute of Technology, Matsugasaki, Sakuo-ku, Kyoto 606-8585, Japan

A. Ecer

Affiliations and Expertise

Indiana University Purdue, University Indianapolis, Purdue University School of Engineering, Indianapolis, IN 46202, USA

Jacques Periaux

Affiliations and Expertise

Dassault-Aviation, Saint-Cloud, France

Ratings and Reviews

Write a review

There are currently no reviews for "Parallel Computational Fluid Dynamics '96"