This comprehensive compilation provides a wealth of information on receptor sequences produced by recombinant DNA techniques used in combination with classical biochemistry. To minimize redundancies in this wealth of information, only a few receptors (some of which are typical for a whole group of similar receptors, others which are presently of special interest) are dealt with in a full-size chapter. Others are represented in the TIPS Receptor Nomenclature Supplement which is included as a special feature in this book, making this volume more useful as a receptor handbook.

Table of Contents

Preface. List of contributors. I. General Topics. Chapter 1. Transmitter receptors - general principles and nomenclature (F. Hucho). 1. Historical aspects and definition. TiPS Receptor Nomenclature Supplement 1993. Chapter 2. Ligand binding studies - theory and experimental techniques (H. Otto). 1. Introduction 2. The experimental scenario 3. Experimental strategies 4. Experimental techniques. Chapter 3. Receptor regulation (F. Nantel, M. Bouvier) 1. Introduction 2. Receptor regulation 3. Conclusion. II. 'Prototype Receptors'. Chapter 4. The nicotinic acetylcholine receptor (F. Hucho). 1. Introduction 2. Function and occurrence 3. Pharmacology and toxicology 4. Biochemistry. Chapter 5. The &bgr;-adrenergic receptors (M. Lohse, E.J.M. Helmreich). 1. Introduction 2. Pharmacological characterization 3. Function and structure 4. Regulation of &bgr;-adrenoceptor function 5. Clinical aspects 6. Outlook. III. Receptors for 'Classic' neurotransmitters. Chapter 6. GABAA and glycine receptors (A. Stephenson). 1. Introduction. 2. GABAA and glycine receptor molecular pharmacology 3. GABAA and glycine receptors biochemistry and molecular biology 4. Oligometric receptor structures and their distribution 5. Functional properties of cloned GABAA and glycine receptors 6. GABAA and glycine receptors in disease states 7. Concluding remarks. Chapter 7. Muscarinic acetylcholine receptors (J. Järv, A. Rinken). 1. Introduction 2. Phenomena used for receptor assay 3. Compounds interacting with the receptor 4. Pharmacological and molecular subtypes of muscarinic receptor 5. Receptor molecule 6. Ligand-receptor interactions 7. Mechanisms of signal transduction 8. Two-site receptor model. Chapter 8. Receptors for 5-hydroxytryptamine (D.H. Bobker, J.T. Williams). 1. Introduction 2. History 3. Nomenclature 4. Biochemistry of 5-HT synthesis, storage, and neurotransmissi


No. of pages:
© 1993
Elsevier Science
Electronic ISBN:
Print ISBN:

About the editor