Nanostructured Photocatalysts
1st Edition
From Materials to Applications in Solar Fuels and Environmental Remediation
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
List of contributors
Foreword
1 Design of efficient photocatalysts through band gap engineering
1.1 Introduction
1.2 Band engineering
1.3 Concluding remarks
References
2 Photochemical synthesis of nanoscale multicomponent metal species and their application to photocatalytic and electrochemical water splitting
2.1 Introduction
2.2 Hydrogen evolution reaction cocatalysts
2.3 Oxygen evolution reaction cocatalysts
2.4 Summary and outlook
References
3 Development of photocatalysts and system optimization for CO2 photoreduction
3.1 Photocatalytic reduction of CO2
3.1.1 Introduction
3.1.2 Principles of CO2 photoreduction
3.1.3 Modeling of CO2 photocatalytic reduction reactions
3.2 Titania-based photocatalyst for CO2 photoreduction
3.2.1 Introduction
3.2.2 Modification of TiO2-based photocatalyst
3.3 Nontitania-based inorganic photocatalysts for CO2 photoreduction
3.3.1 Nanostructured inorganic photocatalysts
3.3.2 Nanostructured carbon-based photocatalysts
3.4 Hole scavenger for CO2 photoreduction
3.4.1 Introduction
3.4.2 Inorganic hole scavenger
3.4.3 Organic hole scavenger
3.5 CO2 photoreduction process development and data collection
3.5.1 Introduction
3.5.2 Experimental and analytical examples
3.5.3 CO2 photoreduction process parameters
3.5.4 Kinetic modeling and systematic tools for CO2 photoreduction
3.5.5 CO2 photoreduction product verification
3.5.6 Summary
Acknowledgement
References
4 Heterogeneous photocatalysis for water purification
4.1 Introduction
4.2 Oxidation mechanism
4.3 Factors affecting heterogeneous photocatalysis
4.4 Water purification applications
4.5 Process sustainability
4.6 Conclusions and reflections on the directions for future research
References
5 Air purification applications using photocatalysis
5.1 Introduction
5.2 Photocatalysis for outdoor and indoor air
5.3 Operating with solar radiation
5.4 Operating with artificial light
5.5 Current standards for evaluation of materials
5.6 Working with sunlight in outdoor and indoor air
5.7 Conclusions
References
6 Substrate and support materials for photocatalysis
6.1 Glass
6.2 Titanium
6.3 Stainless steel
6.4 Plastics
6.5 Textiles
6.6 Support summary
References
6.2 Titanium
7 Two-dimensional materials for photocatalytic water splitting and CO2 reduction
7.1 Introduction
7.2 Two-dimensional materials for photocatalytic hydrogen generation
7.3 Two-dimensional materials for photocatalytic CO2 reduction
7.4 Conclusion and outlook
Acknowledgment
References
8 Photocatalytic inactivation of microorganisms in water
8.1 Introduction
8.2 Fundamental mechanism of photocatalytic disinfection
8.3 Role of reactive oxygen species
8.4 Light distribution
8.5 Effect of water chemistry
8.6 Nature of the microorganism
8.7 Water temperature
8.8 Novel photocatalytic materials
8.9 Concluding remarks
Acknowledgements
References
9 Plasmon-induced photocatalytic transformations
9.1 Introduction
9.2 Concept of plasmonics and plasmon-induced photocatalysis
9.3 Nanostructured materials for plasmonic-induced photocatalysis
9.4 Plasmon-induced photocatalysis: reactions and mechanisms
9.5 Conclusion and perspectives
Acknowledgement
References
Index
Description
Nanostructured Photocatalysts: From Materials to Applications in Solar Fuels and Environmental Remediation addresses the different properties of nanomaterials-based heterogeneous photocatalysis. Heterogeneous nanostructured photocatalysis represents an interesting and viable technique to address issues of climate change and global energy supply. Sustainable hydrogen (H2) fuel production from water via semiconductor photocatalysis, driven by solar energy, is regarded as a viable and sustainable solution to address increasing energy and environmental issues. Similarly, photocatalytic reduction of CO2 with water for the production of hydrocarbons could also be a viable solution. Sections cover band gap tuning, high surface area, the short diffusion path of carriers, and more.
Key Features
- Introduces the utilization of nanostructured materials in heterogeneous photocatalysis for hydrogen fuel production via water splitting
- Explains preparation techniques for different nanomaterials and hybrid nanocomposites, enabling improved sunlight absorption efficiency and enhanced charge separation
- Assesses the challenges that need to be addressed before this technology can be practically implemented, particularly of identifying cost-effective nanophotocatalysts
Readership
Materials Scientists, Energy Engineers, Environmental Scientists, Chemical Engineers, Environmental Chemists
Details
- No. of pages:
- 300
- Language:
- English
- Copyright:
- © Elsevier 2020
- Published:
- 8th June 2020
- Imprint:
- Elsevier
- Paperback ISBN:
- 9780128178362
- eBook ISBN:
- 9780128178379
Ratings and Reviews
About the Editors
Rabah Boukherroub
Rabah Boukherroub is Research Director Group Leader at the Institute of Electronics, Microelectronics and Nanotechnology, University of Lille, France. His research interests are in the area of synthesis of functional nanomaterials (metal and semiconductor nanoparticles, semiconductor nanowires, graphene, carbon dots, etc.), surface chemistry, and photophysics of semiconductor/metal nanostructures with emphasis on biosensors and lab-on-chip applications, drug delivery, and development of new tools for studying molecular dynamics in vivo.
Affiliations and Expertise
Director of Research, CNRS, Institute of Electronics, Microelectronics and Nanotechnology, University Lille
Satishchandra B. OGALE
Ogale Satishchandra is Professor at the Centre for Clean and Renewable Energy, Indian Institute of Science Education and Research (IISER), India. His research interests include Solar Energy, Energy Storage, Graphene and Functional Carbon
Affiliations and Expertise
Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India and Research Institute for Sustainable Energy (RISE), TCG-Centres of Research and Edication in Science and Technology, Sector V, Salt lake, Kolkata-700091, India
Neil Robertson
Neil Robertson is Professor at the School of Chemistry at the University of Edinburgh, UK. He is a Chartered Chemist, Fellow of the Royal Society of Chemistry and a Fellow of the Higher Education Academy.
Affiliations and Expertise
School of Chemistry, University of Edinburgh, UK
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.