COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Multiscale Wavelet Methods for Partial Differential Equations - 1st Edition - ISBN: 9780122006753, 9780080537146

Multiscale Wavelet Methods for Partial Differential Equations, Volume 6

1st Edition

Authors: Wolfgang Dahmen Andrew Kurdila Peter Oswald
eBook ISBN: 9780080537146
Hardcover ISBN: 9780122006753
Imprint: Academic Press
Published Date: 4th August 1997
Page Count: 570
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

FEM-Like Multilevel Preconditioning: P. Oswald, Multilevel Solvers for Elliptic Problems on Domains. P. Vassilevski and J. Wang, Wavelet-Like Methods in the Design of Efficient Multilevel Preconditioners for Elliptic PDEs. Fast Wavelet Algorithms: Compression and Adaptivity: S. Bertoluzza, An Adaptive Collocation Method Based on Interpolating Wavelets. G. Beylkin and J. Keiser, An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear PartialDifferential Equations. P. Joly, Y. Maday, and V. Perrier, A Dynamical Adaptive Concept Based on Wavelet Packet Best Bases: Application to Convection Diffusion Partial Differential Equations. S. Dahlke, W. Dahmen, and R. DeVore, Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations. Wavelet Solvers for Integral Equations: T. von Petersdorff and C. Schwab, Fully Discrete Multiscale Galerkin BEM. A. Rieder, Wavelet Multilevel Solvers for Linear Ill-Posed Problems Stabilized by Tikhonov Regularization. Software Tools and Numerical Experiments: T. Barsch, A. Kunoth, and K. Urban, Towards Object Oriented Software Tools for Numerical Multiscale Methods for PDEs Using Wavelets. J. Ko, A. Kurdila, and P. Oswald, Scaling Function and Wavelet Preconditioners for Second Order Elliptic Problems. Multiscale Interaction and Applications to Turbulence: J. Elezgaray, G. Berkooz, H. Dankowicz, P. Holmes, and M. Myers, Local Models and Large Scale Statistics of the Kuramoto-Sivashinsky Equation. M. Wickerhauser, M. Farge, and E. Goirand, Theoretical Dimension and the Complexity of Simulated Turbulence. Wavelet Analysis of Partial Differential Operators: J-M. Angeletti, S. Mazet, and P. Tchamitchian, Analysis of Second-Order Elliptic Operators Without Boundary Conditions and With VMO or Hilderian Coefficients. M. Holschneider, Some Directional Elliptic Regularity for Domains with Cusps. Subject Index.


This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource.

Key Features

  • Covers important areas of computational mechanics such as elasticity and computational fluid dynamics
  • Includes a clear study of turbulence modeling
  • Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations
  • Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications


University researchers, engineers, and specialists in numerical applications (other than signal and image processing)


No. of pages:
© Academic Press 1997
4th August 1997
Academic Press
eBook ISBN:
Hardcover ISBN:

Ratings and Reviews

About the Authors

Wolfgang Dahmen

Affiliations and Expertise


Andrew Kurdila

Affiliations and Expertise

Texas A&M University

Peter Oswald

Affiliations and Expertise

Texas A&M University