COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Metallic Films for Electronic, Optical and Magnetic Applications - 1st Edition - ISBN: 9780857090577, 9780857096296

Metallic Films for Electronic, Optical and Magnetic Applications

1st Edition

Structure, Processing and Properties

0.0 star rating Write a review
Editors: Katayun Barmak Kevin Coffey
Hardcover ISBN: 9780857090577
eBook ISBN: 9780857096296
Imprint: Woodhead Publishing
Published Date: 13th December 2013
Page Count: 656
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

    <li>Contributor contact details</li> <li>Woodhead Publishing Series in Electronic and Optical Materials</li> <li>Preface</li> <li>Part I: Structure and processing of metallic films<ul><li>1: X-ray diffraction for characterizing metallic films<ul><li>Abstract</li><li>1.1 Introduction</li><li>1.2 Reciprocal space</li><li>1.3 Phase identification</li><li>1.4 Chemical order in binary alloys</li><li>1.5 Defects</li><li>1.6 Epitaxy and texture</li><li>1.7 Experimental methods</li><li>1.8 Conclusion and future trends</li></ul></li><li>2: Crystal orientation mapping in scanning and transmission electron microscopes<ul><li>Abstract</li><li>2.1 Introduction</li><li>2.2 Electron backscatter diffraction (EBSD) in the scanning electron microscope (SEM)</li><li>2.3 Extraction of relative grain boundary energy from EBSD crystal orientation maps</li><li>2.4 Analysis of grain boundary plane distribution (GBPD) from EBSD crystal orientation maps</li><li>2.5 Precession electron diffraction (PED) in the transmission electron microscope (TEM)</li><li>2.6 Determination of grain boundary character distribution (GBCD) from PED crystal orientation maps</li><li>2.7 Trace analysis of PED crystal orientation maps</li><li>2.8 Conclusion and future trends</li></ul></li><li>3: Structure formation during deposition of polycrystalline metallic thin films<ul><li>Abstract</li><li>3.1 Introduction</li><li>3.2 Structural aspects of polycrystalline thin films</li><li>3.3 Main aspects of the physical vapour deposition (PVD) preparation methods applied for the synthesis of polycrystalline metallic thin films</li><li>3.4 Synthesized view of the structure evolution in polycrystalline thin films</li><li>3.5 Fundamental phenomena of structure evolution</li><li>3.6 Case studies</li><li>3.7 Conclusion</li><li>3.8 Acknowledgements</li></ul></li><li>4: Post-deposition grain growth in metallic films<ul><li>Abstract</li><li>4.1 Introduction</li><li>4.2 Normal and abnormal grain growth</li><li>4.3 How is grain size measured in thin films?</li><li>4.4 Stagnation of grain growth and the &#x2018;universal&#x2019; experimental grain size distribution</li><li>4.5 Theory and simulation of curvature-driven growth in two dimensions</li><li>4.6 Comparison of experiments and two-dimensional simulations of grain growth with isotropic boundary energy</li><li>4.7 Reduction of surface and elastic strain energies</li><li>4.8 Anisotropy of grain boundary energy</li><li>4.9 Grain boundary grooving</li><li>4.10 Solute drag</li><li>4.11 Triple junction drag</li><li>4.12 Conclusion</li></ul></li><li>5: Fabrication and characterization of reactive multilayer films and foils<ul><li>Abstract</li><li>5.1 Introduction</li><li>5.2 Background on self-sustaining reactions and reactive multilayer films and foils</li><li>5.3 Fabrication of reactive multilayer films and foils</li><li>5.4 Microstructures, chemistries and geometries of reactive multilayers</li><li>5.5 Chemical energies stored within reactive multilayer films and foils</li><li>5.6 Thresholds for the ignition of self-propagating reactions</li><li>5.7 Reaction propagation, analytical models, and maximum temperatures</li><li>5.8 Numerical predictions of reaction propagation: steady and unsteady</li><li>5.9 Observations and predictions of rapid intermixing and phase transformations</li><li>5.10 Applications of reactive multilayer foils</li><li>5.11 Conclusion and future trends</li><li>5.12 Sources of further information and advice</li><li>5.13 Acknowledgements</li></ul></li><li>6: Metal silicides in advanced complementary metal-oxide-semiconductor (CMOS) technology<ul><li>Abstract</li><li>6.1 Introduction</li><li>6.2 State of the art of complementary metal-oxide-semiconductor (CMOS) technology</li><li>6.3 Silicide formation</li><li>6.4 Electrical contacts</li><li>6.5 Conclusion and future trends</li><li>6.6 Acknowledgments</li></ul></li><li>7: Disorder&#x2013;order transformations in metallic films<ul><li>Abstract</li><li>7.1 Introduction</li><li>7.2 The Fe-Pt system</li><li>7.3 The A1 to L1<sub>0</sub> transformation in FePt</li><li>7.4 Differential scanning calorimetry (DSC) studies of the A1 to L1<sub>0</sub> transformation in FePt</li><li>7.5 The A1 to L1<sub>0</sub>FePt transformation kinetics: the Johnson&#x2013;Mehl&#x2013;Avrami&#x2013;Kolmogorov (JMAK) model</li><li>7.6 The A1 to L1<sub>0</sub> transformation in FePt: the growth mechanism</li><li>7.7 Derivation of expressions for the fraction transformed for three nucleation conditions</li><li>7.8 The application of the JMAK expressions for the three nucleation conditions to the A1 to L1<sub>0</sub> phase transformation in FePt and related ternary alloy films</li><li>7.9 Time&#x2013;temperature&#x2013;transformation (TTT) diagrams</li><li>7.10 Fraction transformed and TTT diagrams for ultrathin films</li><li>7.11 Conclusion</li></ul></li></ul></li> <li>Part II: Properties of metallic films<ul><li>8: Metallic thin films: stresses and mechanical properties<ul><li>Abstract</li><li>8.1 Introduction</li><li>8.2 Mechanics of thin films and substrates</li><li>8.3 Measurement of stresses in thin films</li><li>8.4 Physical origins of stresses in thin films</li><li>8.5 Intrinsic stresses in vapor deposited polycrystalline films</li><li>8.6 Evolution of stresses in films during processing</li><li>8.7 Techniques for studying mechanical properties of thin films</li><li>8.8 Mechanisms controlling strength and plasticity of thin films</li><li>8.9 Conclusion</li></ul></li><li>9: Electron scattering in metallic thin films<ul><li>Abstract</li><li>9.1 Introduction</li><li>9.2 Electrical conduction and the Boltzmann transport equation</li><li>9.3 Quantitative resistivity size effect models</li><li>9.4 Experimental review</li><li>9.5 Conclusion</li></ul></li><li>10: Magnetic properties of metallic thin films<ul><li>Abstract</li><li>10.1 Introduction</li><li>10.2 Magnetic properties</li><li>10.3 Anisotropy in thin films</li><li>10.4 Magnetization processes in thin films</li><li>10.5 Measuring magnetic thin films</li><li>10.6 Highly engineered materials</li><li>10.7 Development of enhanced magnetic thin films</li><li>10.8 Applications of magnetic thin films</li><li>10.9 Non-metallic magnetic thin films</li><li>10.10 Conclusion</li></ul></li><li>11: Optical properties of metallic films<ul><li>Abstract</li><li>11.1 Introduction</li><li>11.2 The Drude and Sommerfeld models</li><li>11.3 Deviations from the Drude&#x2013;Sommerfeld model due to electronic band structure</li><li>11.4 Optical properties of metallic thin films at infrared frequencies</li><li>11.5 Optical skin effects in thin metallic films</li><li>11.6 Experimental illustration of the skin effect</li><li>11.7 Carrier transport in optical versus radio frequency regimes</li><li>11.8 Surface-plasmon polaritons</li><li>11.9 Metamaterials</li><li>11.10 Nanoantenna infrared sensors</li><li>11.11 Conclusion</li></ul></li><li>12: Thermal properties of metallic films<ul><li>Abstract</li><li>12.1 Introduction</li><li>12.2 Thermal conductivity in metallic films and the Wiedemann&#x2013;Franz law</li><li>12.3 Experimental methods</li><li>12.4 Results and theoretical analysis for thin films</li><li>12.5 Conclusion</li></ul></li></ul></li> <li>Index</li>


Metallic films play an important role in modern technologies such as integrated circuits, information storage, displays, sensors, and coatings. Metallic Films for Electronic, Optical and Magnetic Applications reviews the structure, processing and properties of metallic films.

Part one explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy. This part also encompasses the processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations. Chapters in part two focus on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties.

Metallic Films for Electronic, Optical and Magnetic Applications is a technical resource for electronics components manufacturers, scientists, and engineers working in the semiconductor industry, product developers of sensors, displays, and other optoelectronic devices, and academics working in the field.

Key Features

  • Explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy
  • Discusses processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations
  • Focuses on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties


Electronics components manufacturers; Scientists and engineers working in the semiconductor industry; Product developers of sensors, displays and other optoelectronic devices


No. of pages:
© Woodhead Publishing 2014
13th December 2013
Woodhead Publishing
Hardcover ISBN:
eBook ISBN:

Ratings and Reviews

About the Editors

Katayun Barmak

Katayun Barmak is a Professor in the Department of Applied Physics and Applied Mathematics, Columbia University, USA.

Affiliations and Expertise

Carnegie Mellon University

Kevin Coffey

Kevin Coffey is a Professor in the Department of Materials Science and Engineering, the University of Central Florida, USA.

Affiliations and Expertise

University of Central Florida, USA