Membrane Characterization
1st Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Description
Membrane Characterization provides a valuable source of information on how membranes are characterized, an extremely limited field that is confined to only brief descriptions in various technical papers available online.
For the first time, readers will be able to understand the importance of membrane characterization, the techniques required, and the fundamental theory behind them. This book focuses on characterization techniques that are normally used for membranes prepared from polymeric, ceramic, and composite materials.
Key Features
- Features specific details on many membrane characterization techniques for various membrane materials of industrial and academic interest
- Contains examples of international best practice techniques for the evaluation of several membrane parameters, including pore size, charge, and fouling
- Discusses various membrane models more suitable to a specific application
- Provides examples of ab initio calculations for the design, optimization, and scale-up of processes based on characterization data
Readership
Membrane scientists involved in membrane preparation for various applications; chemical engineers and material scientists; students at the upper undergraduate and graduate levels; post-doctoral researchers; and professors; Membrane manufacturers
Table of Contents
Part 1. Spectroscopy Methods for Membrane Characterization
Chapter 1. Fourier Transform Infrared (FTIR) Spectroscopy
- 1. Introduction
- 2. FTIR Principle and Analysis Process
- 3. Sample Preparation Methods
- 4. Techniques of Sample Handling
- 5. Membrane Surface Functionalization Monitoring by FTIR
- 6. Stability and Durability Monitoring in Various Membrane Application by FTIR
- 7. Conclusion
Chapter 2. Raman Spectroscopy
- 1. Introduction
- 2. Principle of Raman Spectroscopy
- 3. Raman Spectroscopy for Polymer Characterization
- 4. Raman Spectroscopy for Polymeric Membrane Characterization
- 5. Conclusion
- List of Abbreviation
Chapter 3. Electron Paramagnetic Resonance (EPR) Spectroscopy
- 1. Introduction
- 2. Fundamentals of EPR
- 3. EPR Applications for the Synthetic Polymeric Membranes
- 4. Other Examples of EPR Applications
- 5. Conclusions
Chapter 4. Nuclear Magnetic Resonance (NMR) Spectroscopy
- 1. Introduction
- 2. Basics of NMR Spectroscopy
- 3. Prediction of Molecular Structure, Blend Miscibility, Phase Morphology of the Polymers
- 4. Determination of Pore Structure and Pore Radius of the Polymeric Membrane
- 5. Determination of Stability and Degradation of Polymeric Membranes
- 6. Conclusion
- List of Abbreviations
- List of Symbols
Chapter 5. X-Ray Photoelectron Spectroscopy (XPS)
- 1. Introduction
- 2. Basics of XPS
- 3. Determination of Atomic Concentration in Polymer Membranes
- 4. Prediction of Crosslinking and Hydrophilicity of the Polymer Membranes
- 5. Conclusion
Chapter 6. Small-Angle Scattering Techniques (SAXS/SANS)
- 1. Introduction
- 2. Analysis of Small-Angle Scattering Profile
- 3. Scattering Profile of Cross-Linked Polymer
- 4. Study of the TFC Membrane
- 5. Small-Angle Scattering From Dilute Polymer Solution or Colloidal Solution Systems
- 6. Probing Polymer–Nanoparticle Interaction in Dilute Solution
- 7. Structure of Polymer Nanocomposite Membrane
- 8. Understanding Form and Structure Factor in Rubbery Polydimethylsiloxane Membrane
- 9. Conclusions
Part 2. Microscopy Methods for Membrane Characterization
Chapter 7. Atomic Force Microscopy (AFM)
- 1. Introduction
- 2. AFM Imaging Modes
- 3. Interaction Force Measurements
- 4. Membrane Surface Imaging and Characterization
- 5. Fouling Characterization of Filtration Membranes Using AFM
- 6. Concluding Remarks
Chapter 8. Transmission Electron Microscopy (TEM)
- 1. Introduction
- 2. Basics of TEM
- 3. Bright-Field and Dark-Field Images
- 4. Specimen Preparation
- 5. Characterization of Membrane Building Block
- 6. Membrane Characterization
- 7. Conclusion
- List of Abbreviations
- List of Symbols
Chapter 9. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy
- 1. Introduction
- 2. Fundamentals of Electron Microscopy
- 3. Applications in Membrane Characterization
- 4. Conclusion
Part 3. Physical and Chemical Characterization Methods for Membrane Characterization
Chapter 10. Pore Size Measurements and Distribution for Ceramic Membranes
- 1. Introduction
- 2. Typical Method for Pore Size Measurements and Distribution
- 3. Comparisons Between Measurements
- 4. Conclusion
- Notation
- Greek Letters
- Subscripts
Chapter 11. The Bubble Gas Transport Method
- 1. Introduction
- 2. Principle of Bubble Gas Transport Method
- 3. Experimental Setup and Procedure
- 4. Critical Aspects of Bubble Gas Transport Method
- 5. Conclusion
- Abbreviations and Symbols
Chapter 12. Contact Angle Measurements
- 1. Introduction
- 2. Theoretical Background
- 3. Method of Contact Angle Measurement
- 4. Factors Affecting Contact Angle Measurements
- 5. Hydrophilicity/Hydrophobicity Analysis
- 6. The Membrane Characterization by Contact Angle
- 7. Conclusion
- List of Symbols
Part 4. Mechanical Properties Characterization of Membranes
Chapter 13. Mechanical Characterization of Membranes
- 1. Introduction
- 2. Mechanical Characterization Techniques
- 3. Mechanical Degradation of Polymeric Membranes
- 4. Stress-State of Polymeric Membrane Under Actual Condition
- 5. Advanced Techniques for Mechanical Properties Testing
- 6. Conclusions
- List of Abbreviations
Part 5. Mass Transport, Modeling and Feed Solution Characterization
Chapter 14. Gas and Vapor Transport in Membranes
- 1. Introduction
- 2. Gas and Vapor Transport in Membranes
- 3. Application
- 4. Conclusion
- List of Abbreviations
- List of Symbols
Chapter 15. Mass Transport in Porous Liquid Phase Membranes
- 1. Introduction
- 2. Mass Transfer From the Bulk Feed to the Membrane Surface
- 3. Separation of Solutes at the Membrane Surface
- 4. Transport of Solutes Through the Membrane
- 5. Solute Transfer From the Membrane Interface to the Bulk Permeate
- 6. Liquid Phase Membrane Applications
- 7. Conclusions
Chapter 16. The Use of Modeling for Characterization of Membranes
- 1. Introduction
- 2. Background Information
- 3. Simple Models for Basic Membrane Characterization
- 4. Advanced Models for Structural and Electrical Properties Characterization
- 5. Conclusions
Chapter 17. Feed Solution Characterization
- 1. Introduction
- 2. Particle Size and Shape
- 3. Methods of Particle Size Measurement
- 4. Particle Charge and Zeta Potential
- 5. Viscosity
- 6. Conclusions
Chapter 18. Electrokinetic Phenomena for Membrane Charge
- 1. Introduction
- 2. Electrophoresis
- 3. Electro-Osmosis
- 4. Sedimentation Potential
- 5. Streaming Potential
- 6. Conclusions
Details
- No. of pages:
- 458
- Language:
- English
- Copyright:
- © Elsevier 2017
- Published:
- 20th February 2017
- Imprint:
- Elsevier
- Paperback ISBN:
- 9780444637765
- eBook ISBN:
- 9780444637918
About the Editors

Nidal Hilal
Professor Nidal Hilal is the Director and Founding Director of NYUAD Water Research Center at New York University-Abu Dhabi. His research interests lie broadly in the identification of innovative and cost-effective solutions within the fields of nano-water, membrane technology, and water treatment including desalination, colloid engineering and the nano-engineering applications of AFM. His internationally recognized research has led to the use of AFM in the development of new membranes with optimized properties for difficult separations. He has published 8 handbooks, 63 invited book chapters and around 500 articles in refereed scientific literature. He has chaired and delivered lectures at numerous international conferences. In 2005 he was awarded Doctor of Science (DSc) from the University of Wales and the Kuwait Prize for applied science “Water resources development”. He is also the Menelaus Medal Winner 2020 which is awarded by the Learned Society of Wales for excellence in engineering and technology. He is the Editor-in-Chief for the international journal Desalination. He sits on the editorial boards of a number of international journals, is an advisory board member of several multinational organizations and has served on/consulted for industry, government departments, research councils and universities on an international basis.
Affiliations and Expertise
NYUAD Water Research Center, New York University - Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
Ahmad Ismail
A.F. Ismail is a Professor at the Universiti Teknologi Malaysia (UTM), where he runs a membrane technology research group at AMTEC. He has also held the post of Dean of Research for the Materials and Manufacturing Alliance at UTM. Dr. Ismail’s research interests cover membrane formation, membranes for wastewaster treatment and gas separation, and nanofibers and nanostructured materials for energy applications. He has authored or edited 4 books, and published several book chapters. Dr. Ismail has received several awards, including the ASEAN Young Scientist and Technologist Award in 2001 (the first Malaysian to receive this award), the Malaysian Young Scientist Award in 2000, and the Malaysian Intellectual Property Award for the Patent Category, and the Merdeka Award for Scholastic Achievements in 2014. He was also the first Malaysian scientist to twice win the National Innovation Award in Waste to Wealth and Product categories, both in 2009 and 2011. Prof. Dr. Ahmad Fauzi Ismail is the Founder and First Director of Advanced Membrane Technology Research Centre (AMTEC). His research interest are in development of polymeric, inorganic and novel mixed matrix membranes for water desalination, waste water treatment, gas separation processes, membrane for palm oil refining, photocatalytic membrane for removal of emerging contaminants, development of haemodialysis membrane and polymer electrolyte membrane for fuel cell applications. His research has been published in many high impact factor journals. He also actively authored many academic books in this field which published by reputable international publishers. He is the author and co-author of over 600 refereed journals. He has authored 6 books, over 50 book chapters and 4 edited books, 6 Patents granted, 14 Patents pending. His h-index is 66 with cumulative citation of over 19,300. He won more than 150 awards national and internationally. Among the most prestigious award won is the Merdeka Award for the Outstanding Scholastic Achievement Category at 4th September 2014, Malaysia’s Rising Star Award 2016 for Frontier Researcher category at 1st November 2016, Malaysia’s Research Star Award 2017 on 5 October 2017, Malaysia’s Research Start Award 2018. Recently, He was appointed as UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development. He is the Chairman of Academy of Sciences Malaysia (Southern Region), Fellow of The Academy of Sciences Malaysia, Chartered Engineer in the UK (CEng) and a Fellow of the Institution of Chemical Engineers (FIChemE). Ahmad Fauzi also served as the Editorial Board Members of Desalination, Journal of Membrane Water Treatment, Jurnal Teknologi, Journal of Membrane Science and Research, Journal of Membrane and Separation Technology and the Advisory editorial board member of Journal of Chemical Technology and Biotechnology. He involved extensively in R&D&C for national and multinational companies related to membrane-based processes for industrial application and currently have two spin off companies. He is the founder of Advanced Membrane Technology Research Centre (AMTEC) and now recognized as Higher Education Centre of Excellence (HICoE). Currently Ahmad Fauzi is the Deputy Vice Chancellor of Research and Innovation, UTM.
Affiliations and Expertise
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
Takeshi Matsuura
Professor Takeshi Matsuura is a senior academic with a career spanning more than 50 years and has held several distinguished posts in many countries including the USA, Canada, Japan, Germany and Singapore. Most recently he joined the University of Ottawa (1992) as the British Gas/NSERC Industrial Research Chair. He served as professor of the Department of Chemical Engineering and the director of the Industrial Membrane Research Institute (IMRI) until he retired in 2002 and was appointed as professor emeritus in 2003. He received the Research Award of International Desalination and Environmental Association in 1983. He is a fellow of the Chemical Institute of Canada and a member of the North American Membrane Society. He has delivered plethora of invited lectures and presentations to many of the world’s foremost scientific events and conferences. He has published over 400 papers in refereed journals, authored and co-authored 6 books and edited 8 books. A special symposium was held at the Eighth Annual Meeting of the North American Membrane Society to honour Prof. Matsuura (together with Dr. S. Sourirajan) for life-long contributions to membrane research and a similarly the International Conference on Membrane Science and Technology 2013 was held in his honour. In addition, he has received the George S. Glinski Award for Excellence in Research and the occasion of his 75th birthday was marked with a special edition of the journal Desalination.
Affiliations and Expertise
Professor, Faculty of Engineering, Chemical and Biological Engineering, The University of Ottawa, Ottawa ON, Canada
Darren Oatley-Radcliffe
Dr Darren Oatley-Radcliffe holds a degree in Chemical and Biological Process Engineering from the University of Wales in 2000, receiving a commendation in the IChemE PENCE prize and the BOC Shuftan memorial prize. Following graduation, he proceeded to read for a Ph.D within the same department under the supervision of Prof. W. Richard Bowen FREng FIChemE. He specialised in membrane separation processes, in particular the complex micro-hydrodynamics and interfacial phenomena associated with aqueous nanofiltration. In the fall of 2004, Darren accepted the post of Senior Process Engineer with GlaxoSmithKline R&D Ltd and developed expertise in cGMP batch production of pharmaceuticals and developed as an industrial process engineer. He received several awards and promotions and was asked to aid in the Innovative Manufacturing Initiative (IMI) (the development of the world’s first fully continuous primary pharmaceutical processing facility). Having successfully completed the inaugural campaigns in this landmark facility, he was awarded the title of ‘Vanguard’ at the GSK CEO Sustainability Awards 2009 and was further promoted to Investigator. In the spring of 2010, he returned to academia and joined Centre for Water Advanced Technologies and Environmental Research (CWATER) at Swansea University, UK. He has led several research projects and has published over 20 refereed papers in the fields of membrane technology, algal processing and pharmaceutical manufacture.
Affiliations and Expertise
College of Engineering, Swansea University, UK
Ratings and Reviews
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.