Measure, Integration, and Functional Analysis - 1st Edition - ISBN: 9780120652600, 9781483265100

Measure, Integration, and Functional Analysis

1st Edition

Authors: Robert B. Ash
eBook ISBN: 9781483265100
Imprint: Academic Press
Published Date: 1st January 1972
Page Count: 300
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Measure, Integration, and Functional Analysis deals with the mathematical concepts of measure, integration, and functional analysis. The fundamentals of measure and integration theory are discussed, along with the interplay between measure theory and topology.

Comprised of four chapters, this book begins with an overview of the basic concepts of the theory of measure and integration as a prelude to the study of probability, harmonic analysis, linear space theory, and other areas of mathematics. The reader is then introduced to a variety of applications of the basic integration theory developed in the previous chapter, with particular reference to the Radon-Nikodym theorem. The third chapter is devoted to functional analysis, with emphasis on various structures that can be defined on vector spaces. The final chapter considers the connection between measure theory and topology and looks at a result that is a companion to the monotone class theorem, together with the Daniell integral and measures on topological spaces. The book concludes with an assessment of measures on uncountably infinite product spaces and the weak convergence of measures.

This book is intended for mathematics majors, most likely seniors or beginning graduate students, and students of engineering and physics who use measure theory or functional analysis in their work.

Table of Contents


Summary of Notation

1 Fundamentals of Measure and Integration Theory

1.1 Introduction

1.2 Fields, σ-Fields, and Measures

1.3 Extension of Measures

1.4 Lebesgue—Stieltjes Measures and Distribution Functions

1.5 Measurable Functions and Integration

1.6 Basic Integration Theorems

1.7 Comparison of Lebesgue and Riemann Integrals

2 Further Results in Measure and Integration Theory

2.1 Introduction

2.2 Radon—Nikodym Theorem and Related Results

2.3 Applications to Real Analysis

2.4 Lp Spaces

2.5 Convergence of Sequences of Measurable Functions

2.6 Product Measures And Fubini’s Theorem

2.7 Measures On Infinite Product Spaces

2.8 References

3 Introduction to Functional Analysis

3.1 Introduction

3.2 Basic Properties of Hilbert Spaces

3.3 Linear Operators on Normed Linear Spaces

3.4 Basic Theorems of Functional Analysis

3.5 Some Properties of Topological Vector Spaces

3.6 References

4 The Interplay between Measure Theory and Topology

4.1 Introduction

4.2 The Daniell Integral

4.3 Measures on Topological Spaces

4.4 Measures on Uncountably Infinite Product Spaces

4.5 Weak Convergence of Measures

4.6 References

Appendix on General Topology

A1 Introduction

A2 Convergence

A3 Product and Quotient Topologies

A4 Separation Properties and Other Ways of Classifying Topological Spaces

A5 Compactness

A6 Semicontinuous Functions

A7 The Stone—Weierstrass Theorem

A8 Topologies on Function Spaces

A9 Complete Metric Spaces and Category


No. of pages:
© Academic Press 1972
Academic Press
eBook ISBN:

About the Author

Robert B. Ash

Ratings and Reviews