Mathematical Physics - 1st Edition - ISBN: 9780444704436, 9780080872636

Mathematical Physics, Volume 152

1st Edition

Authors: R. Carroll
Hardcover ISBN: 9780444704436
eBook ISBN: 9780080872636
Imprint: North Holland
Published Date: 1st June 1988
Page Count: 398
Tax/VAT will be calculated at check-out
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


An introduction to the important areas of mathematical physics, this volume starts with basic ideas and proceeds (sometimes rapidly) to a more sophisticated level, often to the context of current research.

All of the necessary functional analysis and differential geometry is included, along with basic calculus of variations and partial differential equations (linear and nonlinear). An introduction to classical and quantum mechanics is given with topics in Feynman integrals, gauge fields, geometric quantization, attractors for PDE, Ginzburg-Landau Equations in superconductivity, Navier-Stokes equations, soliton theory, inverse problems and ill-posed problems, scattering theory, convex analysis, variational inequalities, nonlinear semigroups, etc.

Contents: 1. Classical Ideas and Problems. Introduction. Some Preliminary Variational Ideas. Various Differential Equations and Their Origins. Linear Second Order PDE. Further Topics in the Calculus of Variations. Spectral Theory for Ordinary Differential Operators, Transmutation, and Inverse Problems. Introduction to Classical Mechanics. Introduction to Quantum Mechanics. Weak Problems in PDE. Some Nonlinear PDE. Ill-Posed Problems and Regularization.

2. Scattering Theory and Solitons. Introduction. Scattering Theory I (Operator Theory). Scattering Theory II (3-D). Scattering Theory III (A Medley of Themes). Scattering Theory IV (Spectral Methods in 3-D). Systems and Half Line Problems. Relations between Potentials and Spectral Data. Introduction to Soliton Theory. Solitons via AKNS Systems. Soliton Theory (Hamiltonian Structure). Some Topics in Integrable Systems.

3. Some Nonlinear Analysis: Some Geometric Formalism. Introduction. Nonlinear Analysis. Monotone Operators. Topological Methods. Convex Analysis. Nonlinear Semigroups and Monotone Sets. Variational Inequalities. Quantum Field Theory. Gauge Fields (Physics). Gauge Fields (Mathematics) and Geometric Quantization. Appendices: Introduction to Linear Functional Analysis. Selected Topics in Functional Analysis. Introduction to Differential Geometry. References. Index.


No. of pages:
© North Holland 1988
North Holland
eBook ISBN:

About the Authors

R. Carroll Author