Mathematical Physics with Partial Differential Equations - 2nd Edition - ISBN: 9780128147597

Mathematical Physics with Partial Differential Equations

2nd Edition

Authors: James Kirkwood
Paperback ISBN: 9780128147597
Imprint: Academic Press
Published Date: 1st March 2018
Page Count: 576
Tax/VAT will be calculated at check-out Price includes VAT (GST)

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Mathematical Physics with Partial Differential Equations, Second Edition, is designed for upper division undergraduate and beginning graduate students taking mathematical physics taught out by math departments. The new edition is based on the success of the first, with a continuing focus on clear presentation, detailed examples, mathematical rigor and a careful selection of topics. It presents the familiar classical topics and methods of mathematical physics with more extensive coverage of the three most important partial differential equations in the field of mathematical physics—the heat equation, the wave equation and Laplace’s equation.

The book presents the most common techniques of solving these equations, and their derivations are developed in detail for a deeper understanding of mathematical applications. Unlike many physics-leaning mathematical physics books on the market, this work is heavily rooted in math, making the book more appealing for students wanting to progress in mathematical physics, with particularly deep coverage of Green’s functions, the Fourier transform, and the Laplace transform. A salient characteristic is the focus on fewer topics but at a far more rigorous level of detail than comparable undergraduate-facing textbooks. The depth of some of these topics, such as the Dirac-delta distribution, is not matched elsewhere.

New features in this edition include: novel and illustrative examples from physics including the 1-dimensional quantum mechanical oscillator, the hydrogen atom and the rigid rotor model; chapter-length discussion of relevant functions, including the Hermite polynomials, Legendre polynomials, Laguerre polynomials and Bessel functions; and all-new focus on complex examples only solvable by multiple methods.

Key Features

  • Introduces and evaluates numerous physical and engineering concepts in a rigorous mathematical framework
  • Provides extremely detailed mathematical derivations and solutions with extensive proofs and weighting for application potential
  • Explores an array of detailed examples from physics that give direct application to rigorous mathematics
  • Offers instructors useful resources for teaching, including an illustrated instructor's manual, PowerPoint presentations in each chapter and a solutions manual


UG/Grad math students taking mathematical physics, engineering math, etc

Table of Contents

1. Preliminaries
2. Vector Calculus
3. Green’s Function
4. Fourier Series
5. Three Important Equations
6. Sturm-Liouville Theory
7. Solving PDE’s in Cartesian Coordinates by Separation of Variables
8. Generating Functions
9. Solving PDE’s in Cylindrical Coordinates by Separation of Variables
10. Solving PDE’s in spherical coordinates w/Sep. of Variables
11. The Fourier Transform
12. The Laplace Transform
13. Solving PDE’s using Green’s Functions


No. of pages:
© Academic Press 2019
Academic Press
Paperback ISBN:

About the Author

James Kirkwood

Bringing over 25 years of teaching expertise, James Kirkwood is the author of ten mathematics books published in a range of areas from calculus to real analysis and mathematical biology. He has been awarded 4 awards for continuing research in the area of mathematical physics, including the 2016 ‘Outstanding Faculty Award of the State Council for Higher Education in Virginia’ – the highest award the state bestows.

Affiliations and Expertise

Professor of Mathematical Sciences, Sweet Briar College, Sweet Briar, VA, USA