Mathematical Analysis

Mathematical Analysis

A Special Course

1st Edition - January 1, 1965

Write a review

  • Author: G. Ye. Shilov
  • eBook ISBN: 9781483139135

Purchase options

Purchase options
DRM-free (PDF)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Mathematical Analysis: A Special Course focuses on the study of mathematical analysis. The book first discusses set theory, including operations on sets, countable sets, equivalence of sets, and sets of the power of the continuum. The text also discusses the elements of the theory of metric and normed linear spaces. Topics include convergent sequences and closed sets; theorem of the fixed point; normed linear spaces; and continuous functions and compact spaces. The selection also discusses the calculus of variations; the theory of the integral; and geometry of Hilbert space. The text also covers differentiation and integration, including functions of bounded variation, derivative of a non-decreasing function, differentiation of functions of sets, and the Stieltjes integral. The book also looks at the Fourier transform. Topics include convergence of Fourier series; Laplace transform; Fourier transform in the case of various independent variables; and quasi-analytic classes of functions. The text is a valuable source of data for readers interested in the study of mathematical analysis.

Table of Contents


  • Contents

    Foreword

    Chapter I. Sets 1

    1. Sets, Subsets, Inclusions

    2. Operations On Sets

    3. Equivalence of Sets

    4. Countable Sets

    5. Sets of the Power of The Continuum

    6. Sets of Higher Powers

    Chapter II. Metric Spaces

    1. Definition and Examples of Metric Spaces. Isometry

    2. Open Sets

    3. Convergent Sequences and Closed Sets

    4. Complete Spaces

    5. Theorem of The Fixed Point

    6. Completion of A Metric Space

    7. Continuous Functions and Compact Spaces

    8. Normed Linear Spaces

    9. Linear and Quadratic Functions On A Linear Space

    Chapter III. The Calculus of Variations

    1. Differentiable Functionals

    2. Extrema of Differentiable Functionals

    3. Functionals of the Type b∫a f(x, y, y') dx

    4. Functionals of The Type b∫a f(x, y, y') dx (Continued)

    5. Functionals with Several Unknown Functions

    6. Functionals with Several Independent Variables

    7. Functionals with Higher Derivatives

    Chapter IV. Theory of the Integral

    1. Sets of Measure Zero and Measurable Functions

    2. The Class C+

    3. Summable Functions 156

    4. Measure of Sets and Theory of Lebesgue Integration

    5. Generalizations

    Chapter V. Geometry of Hilbert Space

    1. Basic Definitions and Examples

    2. Orthogonal Resolutions

    3. Linear Operators

    4. Integral Operators with Square-Summable Kernels

    5. The Sturm-Liouville Problem

    6. Non-Homogeneous Integral Equations with Symmetric Kernels

    7. Non-Homogeneous Integral Equations with Arbitrary Kernels

    8. Applications to Potential Theory

    9. Integral Equations with Complex Parameters

    Chapter VI. Differentiation and Integration

    1. Derivative of A Non-Decreasing Function

    2. Functions of Bounded Variation

    3. Determination of A Function From Its Derivative

    4. Functions of Several Variables

    5. The Stieltjes Integral

    6. The Stieltjes Integral (Continued)

    7. Applications of The Stieltjes Integral In Analysis

    8. Differentiation of Functions of Sets

    Chapter VII. The Fourier Transform

    1. On The Convergence of Fourier Series

    2. The Fourier Transform

    3. The Fourier Transform (Continued)

    4. The Laplace Transform

    5. Quasi-Analytic Classes of Functions

    6. The Fourier Transform In The Class L2(— ∞,∞)

    7. The Fourier-Stieltjes Transform

    8. The Fourier Transform In The Case of Several Independent Variables

    Supplement

    1. Further Remarks on Sets

    2. Theorems On Linear Functionals

    Index

    Other Titles in the Series


Product details

  • No. of pages: 498
  • Language: English
  • Copyright: © Pergamon 1965
  • Published: January 1, 1965
  • Imprint: Pergamon
  • eBook ISBN: 9781483139135

About the Author

G. Ye. Shilov

About the Editors

I.N. Sneddon

M. Stark

K.A.H. Gravett

Ratings and Reviews

Write a review

There are currently no reviews for "Mathematical Analysis"