Matching Theory, Volume 29

1st Edition

Authors: M.D. Plummer L. Lovász
Hardcover ISBN: 9780444879165
eBook ISBN: 9780080872322
Imprint: North Holland
Published Date: 1st June 1986
Page Count: 543
Tax/VAT will be calculated at check-out
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access

Table of Contents

1. Matchings in Bipartite Graphs. Introduction. The Theorems of König, P. Hall and Frobenius. A Bipartite Matching Algorithm: The Hungarian Method. Deficiency, Surplus and a Glimpse of Matroid Theory. Some Consequences of Bipartite Matching Theorems. 2. Flow Theory. Introduction. The Max-Flow Min-Cut Theorem. Flow Algorithms. Flow-Equivalent Trees. Applications of Flow Theory to Matching Theory. Matchings, Flows and Measures. 3. Size and Structure of Maximum Matchings. Introduction. Tutte's Theorem, Gallai's Lemma and Berge's Formula. The Gallai-Edmonds Structure Theorem. Towards a Calculus of Barriers. Sufficient Conditions for Matchings of a Given Size. 4. Bipartite Graphs with Perfect Matchings. Introduction. Elementary Graphs and their Ear Structure. Minimal Elementary Bipartite Graphs. Decomposition into Elementary Bipartite Graphs. 5. General Graphs with Perfect Matchings. Introduction. Elementary Graphs: Elementary Properties. The Canonical Partition P(G). Saturated Graphs and Cathedrals. Ear Structure of 1-Extendable Graphs. More About Factor-Critical and Bicritical Graphs. 6. Some Graph-Theoretical Problems Related to Matchings. Introduction. 2-Matchings and 2-Covers. 2-Bicritical and Regularizable Graphs. Matchings, 2-Matchings and the König Property. Hamilton Cycles and 2-Matchings. The Chinese Postman Problem. Optimum Paths, Cycles, Joins and Cuts. 7. Matching and Linear Programming. Introduction. Linear Programming and Matching in Bigraphs. Matchings and Fractional Matchings. The Matching Polytope. Chromatic Index. Fractional Matching Polytopes and Cover Polyhedra. The Dimension of the Perfect Matching Polytope. 8. Determinants and Matchings. Introduction. Permanents. The Method of Variables. The Pfaffian and the Number of Perfect Matchings. Probabilistic Enumeration of Perfect Matchings. Matching Polynomials.


This study of matching theory deals with bipartite matching, network flows, and presents fundamental results for the non-bipartite case. It goes on to study elementary bipartite graphs and elementary graphs in general. Further discussed are 2-matchings, general matching problems as linear programs, the Edmonds Matching Algorithm (and other algorithmic approaches), f-factors and vertex packing.


No. of pages:
© North Holland 1986
North Holland
eBook ISBN:
Hardcover ISBN:


@qu:It begins at an elementary level and ends at the frontiers of current research, and the journey is enlivened by readable exposition, helpful motivation, interesting historical background and elegant proofs... a truly notable achievement... @source:Bulletin of the London Mathematical Society @qu:Everything is developed with splendid clarity, organized in a masterful way and written in an excellent style, sometimes exciting, sometimes humorous, always maintaining a lively dialogue with the reader. This beautiful book provides a comprehensive treatment of the subject, leading up to the frontiers of current research. @source:Optima

About the Authors

M.D. Plummer Author

L. Lovász Author

Affiliations and Expertise

Princeton University, Department of Computer Science, USA