Introduction to Abstract Algebra

1st Edition

Authors: J. Moore
Hardcover ISBN: 9780125057509
eBook ISBN: 9780080924885
Imprint: Academic Press
Published Date: 28th February 1975
Page Count: 291
Tax/VAT will be calculated at check-out
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Introduction to Abstract Algebra provides insight into the methods of abstract algebra. This book provides information pertinent to the fundamental concepts of abstract algebra.

Organized into five chapters, this book begins with an overview of the study of natural numbers that are used historically for the purpose of counting the objects in different assemblages. This text then examines the concepts of set and elements of a set. Other chapters contain an intuitive survey of the different kinds of real numbers, with the inclusion of many very important results on integers. This book presents as well a brief survey of algebraic systems from the trivial sets to the more highly structures groups, with emphasis on the elementary properties of groups. The final chapter deals with the simple development of complex numbers.

This book is intended to be suitable for students in abstract algebra.

Table of Contents



Chapter 0 Numbers

0.1 A Naïve Survey of Real Numbers

0.2 Basic Theorems on Integers : A Heuristic Look

0.3 Complex Numbers: Normal Form

0.4 Complex Numbers: Polar Form

0.5 Complex Numbers: Root Extractions

Chapter 1 Sets to Groups

1.1 Sets

1.2 Induction and Well Ordering

1.3 Functions or Mappings

1.4 Semigroups

1.5 Groups: Number Systems

1.6 Groups: Other Examples

1.7 Isomorphism

Chapter 2 Elementary Theory of Groups

2.1 Elementary Properties

2.2 Subgroups

2.3 The Euclidean Group

2.4 Cyclic Groups

2.5 Permutation Groups

2.6 Cycles and the Parity Theorem

2.7 Cosets and Lagrange's Theorem

Chapter 3 Elementary Theory of Rings

3.1 Definition and Examples

3.2 Elementary Properties

3.3 Types of Rings I

3.4 Types of Rings II

3.5 Characteristic and Quaternions

Chapter 4 Quotient or Factor Systems

4.1 Equivalence Relations and Partitions

4.2 Congruences Mod n

4.3 Congruence Classes and Zn

4.4 Normal Subgroups and Quotient Groups

4.5 Ideals and Quotient Rings

4.6 Homomorphism

Chapter 5 Polynomial Rings

5.1 The Polynomial Ring R[x]

5.2 Division Algorithm in Z and F[x]

5.3 Euclidean Algorithm in Z and F[x]

5.4 Unique Factorization in Z and F[x]

5.5 Zeros of Polynomials

5.6 Rational Polynomials

5.7 Quotient Polynomial Rings

Answers or Hints to Selected Odd-Numbered Problems



No. of pages:
© Academic Press 1975
Academic Press
Hardcover ISBN:
eBook ISBN:

About the Author

J. Moore

Affiliations and Expertise

Computational Logic, Inc.