Description

Innovation in aerospace design and engineering is essential to meet the many challenges facing this sector. Innovation in aeronautics explores both a range of innovative ideas and how the process of innovation itself can be effectively managed.

After an introduction to innovation in aeronautics, part one reviews developments including biologically-inspired technologies, morphing aerodynamic concepts, jet engine design drivers, and developments underpinned by digital technologies. The environment and human factors in innovation are also explored as are trends in supersonic passenger air travel. Part two goes on to examine change and the processes and management involved in innovative technology development. Challenges faced in aeronautical production are the focus of part three, which reviews topics such as intellectual property and patents, risk mitigation and the use of lean engineering. Finally, part four examines key issues in what makes for successful innovation in this sector.

With its distinguished editors and international team of expert contributors, Innovation in aeronautics is an essential guide for all those involved in the design and engineering of aerospace structures and systems.

Key Features

  • Explores a range of innovative aerospace design ideas
  • Discusses how the process of innovation itself can be effectively managed
  • Reviews developments including biologically-inspired technologies, morphing aerodynamic concepts, jet engine design drivers and developments underpinned by digital technologies

Readership

Designers , engineers in the aerospace sector, jet engine manufacturers, avionic engineers

Table of Contents

Contributor contact details

Part I: Concepts

Chapter 1: Introduction to innovation in aeronautics

1.1 Introduction

1.2 Concepts

1.3 Change

1.4 Challenges

Chapter 2: Biologically inspired technologies for aeronautics

Abstract:

2.1 Introduction

2.2 Biologically inspired or independent human innovation

2.3 Nature as a source of innovation in aerospace

2.4 Biologically inspired mechanisms and systems

2.5 Robotics as beneficiary of biomimetic technologies

2.6 Conclusion: challenges and potential development

2.7 Acknowledgement

Chapter 3: Aircraft morphing technologies

Abstract:

3.1 Introduction

3.2 Early aircraft morphing developments

3.3 Keeping morphing alive – NASA research in morphing aircraft structures

3.4 Resurgence of morphing concepts

3.5 Current morphing component technologies

3.6 Conclusion: the future of aircraft morphing technologies

Chapter 4: Jet engine design drivers: past, present and future

Abstract:

4.1 Introduction

4.2 Technological drivers

4.3 New challenges

4.4 Meeting the challenges through innovation

4.5 Conclusion

Chapter 5: Innovation in avionic systems: developments underpinned by digital technologies

Abstract:

5.1 Introduction

5.2 Cost

5.3 Capability

5.4 Demand

5.5 Timing

5.6 Future requirements

5.7 Current safety processes

5.8 The system of the future

5.9 The ultimate avionics computer

5.10 System–crew interaction

5.11 Conclusions

Chapter 6: The environment as the key design driver in aeronautics

Abstract:

6.1 Introduction

6.2 Economic efficiency

6.3 Environmental impact

6.4 The characteristics of the aeroplane

6.5 What determines

Details

No. of pages:
416
Language:
English
Copyright:
© 2012
Published:
Imprint:
Woodhead Publishing
eBook ISBN:
9780857096098
Print ISBN:
9781845695507

About the editors

T Young

Trevor Young is Senior Lecturer in Aeronautical Engineering at the University of Limerick, Ireland.

Affiliations and Expertise

University of Limerick, Ireland

M Hirst

Mike Hirst is a Senior Associate with Airport Planning and Development Ltd, Leeds, UK. He is a chartered engineer and aviation systems specialist with some 40 years’ experience in civil aviation, including flight testing, air traffic control and systems, airport design, and operations training, education and research.

Affiliations and Expertise

Airport Planning and Development Ltd, UK