Identification of Linear Systems

1st Edition

A Practical Guideline to Accurate Modeling

Authors: J. Schoukens R. Pintelon
Hardcover ISBN: 9780080407340
eBook ISBN: 9780080912561
Imprint: Pergamon
Published Date: 1st May 1991
275.00 + applicable tax
25600.00 + applicable tax
165.00 + applicable tax
205.00 + applicable tax
275.00 + applicable tax
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Description

This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.

Readership

For researchers and practising engineers who have to deal with the modeling of linear dynamic systems and specialists in identification theory.

Table of Contents

Chapter headings and selected topics: Preface. A General Introduction to Parameter Estimation. Steps in the identification process. Parameter estimation, an example: measurement of a resistor. The ideal estimator. A Review of Estimation Methods and their Applications. Motives in focusing on the least squares technique. Parametric models. Time domain versus frequency domain. Errors due to noise on the independent variables. A Maximum Likelihood Estimator for Linear Time Invariant Systems. Measurement of a resistance. Estimation of transfer functions: a practical approach. Estimation of transfer functions: a theoretical approach. Numerical considerations. Extensions of the model. Application of ELiS to experimental data. Conclusions. Design of Excitation Signals. Optimization of the time domain behaviour of excitation signals. Optimizing the frequency domain behaviour of excitation signals: design of optimized power spectra. Model Selection. Verification of model validity. Introduction of the model complexity in the cost function. Study of the influence of model errors on the behaviour of the cost function. Optimal experiment strategy. Examples. Estimation of Linear Time Invariant Systems with Delay. The estimation algorithm and its properties. Simulations. Phase Correction of Linear Time Invariant Systems with Digital Allpass Filters. Phase distortion. Optimization strategy. Noise sensitivity. Application of ELiS to Measurement Problems. Modal analysis. Flight flutter data analysis. A Guideline for Transfer Function Estimation. Accurate modeling of a linear analog system. References. Author index. Subject index.

Details

Language:
English
Copyright:
© Pergamon 1991
Published:
Imprint:
Pergamon
eBook ISBN:
9780080912561
Hardcover ISBN:
9780080407340

About the Author

J. Schoukens

R. Pintelon

Affiliations and Expertise

Vrije Universiteit Brussel, Brussels, Belgium

Reviews

This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.